Chinaunix首页 | 论坛 | 博客
  • 博客访问: 311967
  • 博文数量: 144
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 493
  • 用 户 组: 普通用户
  • 注册时间: 2013-08-14 17:08
文章分类

全部博文(144)

文章存档

2015年(42)

2014年(19)

2013年(83)

我的朋友

分类: LINUX

2014-02-24 17:23:52

 

linux下让进程运行在指定的cpu上

分类: Linux开发c/c++ 2936人阅读 评论(1) 举报

最近负责的svr压力比较大,业务逻辑有点复杂,能优化的地方已经全部优化了,

目前每秒3k次,cpu负载还是比较高

 

top看一下,4核的cpu负载不是太均衡,打算考虑一下将业务进程指定到3个cpu上运行,另外一个cpu专门负责处理网络收发包;打算尝试一下,如果还是不行,再过段时间,访问量再增加的话,就要加机器了,呜呜

 

 

 

补充:今天测试了一下,效果挺好,同样进程数的情况下,进行cpu绑定

每个cpu都利用起来了,负载也比不绑定的情况下好了很多

 

 

 

分析一下有效果的原因: 

看了《linux内核设计与实现》的42节,觉得人为控制一下cpu的绑定还是有用处的
1、linux的SMP负载均衡是基于进程数的,每个cpu都有一个可执行进程队列,只有当其中一个cpu的可执行队列里进程数比其他cpu队列进程数多25%时,才会将进程移动到另外空闲cpu上,也就是说cpu0上的进程数应该是比其他cpu上多,但是会在25%以内


2、我们的业务中耗费cpu的分四种类型,(1)网卡中断(2)1个处理网络收发包进程(3)耗费cpu的n个worker进程(4)其他不太耗费cpu的进程

 

    基于1中的 负载均衡是针对进程数,那么(1)(2)大部分时间会出现在cpu0上,(3)的n个进程会随着调度,平均到其他多个cpu上,(4)里的进程也是随着调度分配到各个cpu上;

 

当发生网卡中断的时候,cpu被打断了,处理网卡中断,那么分配到cpu0上的worker进程肯定是运行不了的

其他cpu上不是太耗费cpu的进程获得cpu时,就算它的时间片很短,它也是要执行的,那么这个时候,你的worker进程还是被影响到了;按照调度逻辑,一种非常恶劣的情况是:(1)(2)(3)的进程全部分配到cpu0上,其他不太耗费cpu的进程数很多,全部分配到cpu1,cpu2,cpu3上。。那么网卡中断发生的时候,你的业务进程就得不到cpu了

 

如果从业务的角度来说,worker进程运行越多,肯定业务处理越快,人为的将它捆绑到其他负载低的cpu上,肯定能提高worker进程使用cpu的时间 

 

 

 

找了个例子:

 

 

 

现在多CPU的趋势越来越大了. 有时候为了更好地操作机器, 需要将某个进程绑定到具体的CPU上去. 下面给出了一个进程绑定到具体的CPU上去的一个例子.

  1. #include  
  2. #include  
  3. #include  
  4. #include  
  5. #include  
  6.   
  7. #define __USE_GNU  
  8. #include  
  9. #include  
  10. #include  
  11.   
  12. int main(int argc, char* argv[])  
  13. {  
  14.         int num = sysconf(_SC_NPROCESSORS_CONF);  
  15.         int created_thread = 0;  
  16.         int myid;  
  17.         int i;  
  18.         int j = 0;  
  19.   
  20.         cpu_set_t mask;  
  21.         cpu_set_t get;  
  22.   
  23.         if (argc != 2)  
  24.         {  
  25.                 printf("usage : ./cpu num/n");  
  26.                 exit(1);  
  27.         }  
  28.   
  29.         myid = atoi(argv[1]);  
  30.   
  31.         printf("system has %i processor(s). /n", num);  
  32.   
  33.         CPU_ZERO(&mask);  
  34.         CPU_SET(myid, &mask);  
  35.   
  36.         if (sched_setaffinity(0, sizeof(mask), &mask) == -1)  
  37.         {  
  38.                 printf("warning: could not set CPU affinity, continuing.../n");  
  39.         }  
  40.         while (1)  
  41.         {  
  42.   
  43.                 CPU_ZERO(&get);  
  44.                 if (sched_getaffinity(0, sizeof(get), &get) == -1)  
  45.                 {  
  46.                         printf("warning: cound not get cpu affinity, continuing.../n");  
  47.                 }  
  48.                 for (i = 0; i < num; i++)  
  49.                 {  
  50.                         if (CPU_ISSET(i, &get))  
  51.                         {  
  52.                                 printf("this process %d is running processor : %d/n",getpid(), i);  
  53.                         }  
  54.                 }  
  55.         }  
  56.         return 0;  
  57. }  
#include #include #include #include #include #define __USE_GNU #include #include #include int main(int argc, char* argv[]) { int num = sysconf(_SC_NPROCESSORS_CONF); int created_thread = 0; int myid; int i; int j = 0; cpu_set_t mask; cpu_set_t get; if (argc != 2) { printf("usage : ./cpu num/n"); exit(1); } myid = atoi(argv[1]); printf("system has %i processor(s). /n", num); CPU_ZERO(&mask); CPU_SET(myid, &mask); if (sched_setaffinity(0, sizeof(mask), &mask) == -1) { printf("warning: could not set CPU affinity, continuing.../n"); } while (1) { CPU_ZERO(&get); if (sched_getaffinity(0, sizeof(get), &get) == -1) { printf("warning: cound not get cpu affinity, continuing.../n"); } for (i = 0; i < num; i++) { if (CPU_ISSET(i, &get)) { printf("this process %d is running processor : %d/n",getpid(), i); } } } return 0; }

下面是在两个终端分别执行了./cpu 0  ./cpu 2 后得到的结果. 效果比较明显.


QUOTE:
Cpu0  :  5.3%us,  5.3%sy,  0.0%ni, 87.4%id,  0.0%wa,  0.0%hi,  2.0%si,  0.0%st
Cpu1  :  0.0%us,  0.0%sy,  0.0%ni,100.0%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st
Cpu2  :  5.0%us, 12.2%sy,  0.0%ni, 82.8%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st
Cpu3  :  0.0%us,  0.0%sy,  0.0%ni,100.0%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st
Cpu4  :  0.0%us,  0.0%sy,  0.0%ni, 99.7%id,  0.3%wa,  0.0%hi,  0.0%si,  0.0%st
Cpu5  :  0.0%us,  0.0%sy,  0.0%ni,100.0%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st
Cpu6  :  0.0%us,  0.0%sy,  0.0%ni,100.0%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st
Cpu7  :  0.0%us,  0.0%sy,  0.0%ni,100.0%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st
///////////////////////////////////////////////
CPU Affinity (CPU亲合力)

CPU亲合力就是指在Linux系统中能够将一个或多个进程绑定到一个或多个处理器上运行.
一个进程的CPU亲合力掩码决定了该进程将在哪个或哪几个CPU上运行.在一个多处理器系统中,设置CPU亲合力的掩码可能会获得更好的性能.
一个CPU的亲合力掩码用一个cpu_set_t结构体来表示一个CPU集合,下面的几个宏分别对这个掩码集进行操作:
CPU_ZERO() 清空一个集合
CPU_SET()与CPU_CLR()分别对将一个给定的CPU号加到一个集合或者从一个集合中去掉.
CPU_ISSET()检查一个CPU号是否在这个集合中.
其实这几个的用法与select()函数那几个调用差不多.
下面两个函数就是最主要的了:
sched_setaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *mask)
该函数设置进程为pid的这个进程,让它运行在mask所设定的CPU上.如果pid的值为0,则表示指定的是当前进程,使当前进程运行在mask所设定的那些CPU上.第二个参数cpusetsize是

mask所指定的数的长度.通常设定为sizeof(cpu_set_t).如果当前pid所指定的CPU此时没有运行在mask所指定的任意一个CPU上,则该指定的进程会从其它CPU上迁移到mask的指定的

一个CPU上运行.
sched_getaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *mask)
该函数获得pid所指示的进程的CPU位掩码,并将该掩码返回到mask所指向的结构中.即获得指定pid当前可以运行在哪些CPU上.同样,如果pid的值为0.也表示的是当前进程.

这几个宏与函数的具体用法前面已经有讲解.

关于cpu_set_t的定义
# define __CPU_SETSIZE  1024
# define __NCPUBITS     (8 * sizeof (__cpu_mask))

typedef unsigned long int __cpu_mask;

# define __CPUELT(cpu)  ((cpu) / __NCPUBITS)
# define __CPUMASK(cpu) ((__cpu_mask) 1 << ((cpu) % __NCPUBITS))

typedef struct
{
  __cpu_mask __bits[__CPU_SETSIZE / __NCPUBITS];
} cpu_set_t;

# define __CPU_ZERO(cpusetp) /
  do {                                                                        /
    unsigned int __i;                                                         /
    cpu_set_t *__arr = (cpusetp);                                             /
    for (__i = 0; __i < sizeof (cpu_set_t) / sizeof (__cpu_mask); ++__i)      /
      __arr->__bits[__i] = 0;                                                 /
  } while (0)
# define __CPU_SET(cpu, cpusetp) /
  ((cpusetp)->__bits[__CPUELT (cpu)] |= __CPUMASK (cpu))
# define __CPU_CLR(cpu, cpusetp) /
  ((cpusetp)->__bits[__CPUELT (cpu)] &= ~__CPUMASK (cpu))
# define __CPU_ISSET(cpu, cpusetp) /
  (((cpusetp)->__bits[__CPUELT (cpu)] & __CPUMASK (cpu)) != 0)

在我的机器上sizeof(cpu_set_t)的大小为128,即一共有1024位.第一位代表一个CPU号.某一位为1则表示某进程可以运行在该位所代表的cpu上.例如
CPU_SET(1, &mask);
则mask所对应的第2位被设置为1.
此时如果printf("%d/n", mask.__bits[0]);就打印出2.表示第2位被置为1了.


具体我是参考man sched_setaffinity文档中的函数的.
然后再参考了一下IBM的 developerWorks上的一个讲解.
http://www.ibm.com/developerworks/cn/linux/l-affinity.html
阅读(2089) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~