Chinaunix首页 | 论坛 | 博客
  • 博客访问: 311881
  • 博文数量: 144
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 493
  • 用 户 组: 普通用户
  • 注册时间: 2013-08-14 17:08
文章分类

全部博文(144)

文章存档

2015年(42)

2014年(19)

2013年(83)

我的朋友

分类: LINUX

2013-10-17 20:04:27

系统中有很多与时间相关的程序(比如定期执行的任务,某一时间执行的任务,推迟一段时间执行的任务),因此,时间的管理对于linux来说非常重要。


主要内容:

  • 系统时间
  • 定时器
  • 定时器相关概念
  • 定时器执行流程
  • 实现程序延迟的方法
  • 定时器和延迟的例子


1. 系统时间

系统中管理的时间有2种:实际时间和定时器。

1.1  实际时间

实际时间就是现实中钟表上显示的时间,其实内核中并不常用这个时间,主要是用户空间的程序有时需要获取当前时间,

所以内核中也管理着这个时间。


实际时间的获取是在开机后,内核初始化时从RTC读取的。

内核读取这个时间后就将其放入内核中的 xtime 变量中,并且在系统的运行中不断更新这个值。

注:RTC就是实时时钟的缩写,它是用来存放系统时间的设备。一般和BIOS一样,由主板上的电池供电的,所以即使关机也可将时间保存。


实际时间存放的变量 xtime 在文件 kernel/time/timekeeping.c中。

复制代码

/* 按照16位对齐,其实就是2个long型的数据 */ struct timespec xtime __attribute__ ((aligned (16))); /* timespec结构体的定义如下, 参考  */ struct timespec {
    __kernel_time_t    tv_sec; /* seconds */ long tv_nsec; /* nanoseconds */ }; /* _kernel_time_t 定义如下 */ typedef long __kernel_time_t;

复制代码


系统读写 xtime 时用的就是顺序锁。

复制代码

/* 写入 xtime 参考 do_sometimeofday 方法 */ int do_settimeofday(struct timespec *tv)
{ /* 省略 。。。。 */ write_seqlock_irqsave(&xtime_lock, flags); /* 获取写锁 */ /* 更新 xtime */ write_sequnlock_irqrestore(&xtime_lock, flags); /* 释放写锁 */ /* 省略 。。。。 */ return 0;
} /* 读取 xtime 参考 do_gettimeofday 方法 */ void do_gettimeofday(struct timeval *tv)
{ struct timespec now;

    getnstimeofday(&now); /* 就是在这个方法中获取读锁,并读取 xtime */ tv->tv_sec = now.tv_sec;
    tv->tv_usec = now.tv_nsec/1000;
} void getnstimeofday(struct timespec *ts)
{ /* 省略 。。。。 */ /* 顺序锁中读锁来循环获取 xtime,直至读取过程中 xtime 没有被改变过 */ do {
        seq = read_seqbegin(&xtime_lock); *ts = xtime;
        nsecs = timekeeping_get_ns(); /* If arch requires, add in gettimeoffset() */ nsecs += arch_gettimeoffset();

    } while (read_seqretry(&xtime_lock, seq)); /* 省略 。。。。 */ }

复制代码

上述场景中,写锁必须要优先于读锁(因为 xtime 必须及时更新),而且写锁的使用者很少(一般只有系统定期更新xtime的线程需要持有这个锁)。

这正是 顺序锁的应用场景。


1.2 定时器

定时器是内核中主要使用的时间管理方法,通过定时器,可以有效的调度程序的执行。

动态定时器是内核中使用比较多的定时器,下面重点讨论的也是动态定时器。


2. 定时器

内核中的定时器有2种,静态定时器和动态定时器。

静态定时器一般执行了一些周期性的固定工作:

  • 更新系统运行时间
  • 更新实际时间
  • 在SMP系统上,平衡各个处理器上的运行队列
  • 检查当前进程是否用尽了自己的时间片,如果用尽,需要重新调度。
  • 更新资源消耗和处理器时间统计值


动态定时器顾名思义,是在需要时(一般是推迟程序执行)动态创建的定时器,使用后销毁(一般都是只用一次)。

一般我们在内核代码中使用的定时器基本都是动态定时器,下面重点讨论动态定时器相关的概念和使用方法。


3. 定时器相关概念

定时器的使用中,下面3个概念非常重要:

  1. HZ
  2. jiffies
  3. 时间中断处理程序


3.1 HZ

节拍率(HZ)是时钟中断的频率,表示的一秒内时钟中断的次数。

比如 HZ=100 表示一秒内触发100次时钟中断程序。


HZ的值一般与体系结构有关,x86 体系结构一般定义为 100,参考文件 include/asm-generic/param.h

HZ值的大小的设置过程其实就是平衡 精度和性能 的过程,并不是HZ值越高越好。

HZ值

优势

劣势

高HZ 时钟中断程序运行的更加频繁,依赖时间执行的程序更加精确,
对资源消耗和系统运行时间的统计更加精确。
时钟中断执行的频繁,增加系统负担       
时钟中断占用的CPU时间过多


此外,有一点需要注意,内核中使用的HZ可能和用户空间中定义的HZ值不一致,为了避免用户空间取得错误的时间,

内核中也定义了 USER_HZ,即用户空间使用的HZ值。

一般来说,USER_HZ 和 HZ 都是相差整数倍,内核中通过函数 jiffies_to_clock_t 来将内核来将内核中的 jiffies转为 用户空间 jiffies

复制代码

/* 参见文件: kernel/time.c  *
//*
 * Convert jiffies/jiffies_64 to clock_t and back. */ clock_t jiffies_to_clock_t(unsigned long x)
{ #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 # if HZ < USER_HZ return x * (USER_HZ / HZ);
# else return x / (HZ / USER_HZ);
# endif #else return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ); #endif }
EXPORT_SYMBOL(jiffies_to_clock_t);

复制代码


3.2 jiffies

jiffies用来记录自系统启动以来产生的总节拍数。比如系统启动了 N 秒,那么 jiffies就为 N×HZ

jiffies的相关定义参考头文件   include/linux/jiffies.h


/* 64bit和32bit的jiffies定义如下 */ extern u64 __jiffy_data jiffies_64; extern unsigned long volatile __jiffy_data jiffies;


使用定时器时一般都是以jiffies为单位来延迟程序执行的,比如延迟5个节拍后执行的话,执行时间就是 jiffies+5

32位的jiffies的最大值为 2^32-1,在使用时有可能会出现回绕的问题。

比如下面的代码:

复制代码

unsigned long timeout = jiffies + HZ/2; /* 设置超时时间为 0.5秒 */ while (timeout < jiffies)
{ /* 还没有超时,继续执行任务 */ } /* 执行超时后的任务 */

复制代码

正常情况下,上面的代码没有问题。当jiffies接近最大值的时候,就会出现回绕问题。

由于是unsinged long类型,所以jiffies达到最大值后会变成0然后再逐渐变大,如下图所示:

unsigned_jiffies


所以在上述的循环代码中,会出现如下情况:

jiffies_rewind

  1. 循环中第一次比较时,jiffies = J1,没有超时
  2. 循环中第二次比较时,jiffies = J2,实际已经超时了,但是由于jiffies超过的最大值后又从0开始,所以J2远远小于timeout
  3. while循环会执行很长时间(> 2^32-1 个节拍)不会结束,几乎相当于死循环了


为了回避回扰的问题,可以使用头文件中提供的 time_aftertime_before等宏

复制代码

#define time_after(a,b)        \ (typecheck(unsigned long, a) && \
     typecheck(unsigned long, b) && \
     ((long)(b) - (long)(a) < 0)) #define time_before(a,b)    time_after(b,a) #define time_after_eq(a,b)    \ (typecheck(unsigned long, a) && \
     typecheck(unsigned long, b) && \
     ((long)(a) - (long)(b) >= 0)) #define time_before_eq(a,b)    time_after_eq(b,a)

复制代码

上述代码的原理其实就是将 unsigned long 类型转换为 long 类型来避免回扰带来的错误,

long 类型超过最大值时变化趋势如下:

signed_jiffies


long 型的数据的回绕会出现在 2^31-1 变为 -2^32 的时候,如下图所示:

long_rewind

  1. 第一次比较时,jiffies = J1,没有超时
  2. 第二次比较时,jiffies = J2,一般 J2 是负数
    理论上 (long)timeout - (long)J2 = 正数 - 负数 = 正数(result)   
    但是,这个正数(result)一般会大于 2^31 - 1,所以long型的result又发生了一次回绕,变成了负数。   
    除非timeout和J2之间的间隔 > 2^32 个节拍,result的值才会为正数(注1)。

注1:result的值为正数时,必须是在result的值 小于 2^31-1 的情况下,大于 2^31-1 会发生回绕。

long_result

上图中 X + Y 表示timeout 和 J2之间经过的节拍数。

result 小于 2^31-1 ,也就是 timeout - J2 < 2^31 – 1

timeout 和 -J2 表示的节拍数如上图所示。(因为J2是负数,所有-J2表示上图所示范围的值)

因为 timeout + X + Y - J2 = 2^31-1 + 2^32

所以 timeout - J2 < 2^31 - 1 时, X + Y > 2^32

也就是说,当timeout和J2之间经过至少 2^32 个节拍后,result才可能变为正数。

timeout和J2之间相差这么多节拍是不可能的(不信可以用HZ将这些节拍换算成秒就知道了。。。)


利用time_after宏就可以巧妙的避免回绕带来的超时判断问题,将之前的代码改成如下代码即可:

复制代码

unsigned long timeout = jiffies + HZ/2; /* 设置超时时间为 0.5秒 */ while (time_after(jiffies, timeout))
{ /* 还没有超时,继续执行任务 */ } /* 执行超时后的任务 */

复制代码


3.3 时钟中断处理程序

时钟中断处理程序作为系统定时器而注册到内核中,体系结构的不同,可能时钟中断处理程序中处理的内容不同。

但是以下这些基本的工作都会执行:

  • 获得 xtime_lock 锁,以便对访问 jiffies_64 和墙上时间 xtime 进行保护
  • 需要时应答或重新设置系统时钟
  • 周期性的使用墙上时间更新实时时钟
  • 调用 tick_periodic()


tick_periodic函数位于: kernel/time/tick-common.c

复制代码

static void tick_periodic(int cpu)
{ if (tick_do_timer_cpu == cpu) {
        write_seqlock(&xtime_lock); /* Keep track of the next tick event */ tick_next_period = ktime_add(tick_next_period, tick_period);

        do_timer(1);
        write_sequnlock(&xtime_lock);
    }

    update_process_times(user_mode(get_irq_regs()));
    profile_tick(CPU_PROFILING);
}

复制代码

其中最重要的是 do_timer 和 update_process_times 函数。

我了解的步骤进行了简单的注释。

复制代码

void do_timer(unsigned long ticks)
{ /* jiffies_64 增加指定ticks */ jiffies_64 += ticks; /* 更新实际时间 */ update_wall_time(); /* 更新系统的平均负载值 */ calc_global_load();
} void update_process_times(int user_tick)
{ struct task_struct *p = current; int cpu = smp_processor_id(); /* 更新当前进程占用CPU的时间 */ account_process_tick(p, user_tick); /* 同时触发软中断,处理所有到期的定时器 */ run_local_timers();
    rcu_check_callbacks(cpu, user_tick);
    printk_tick(); /* 减少当前进程的时间片数 */ scheduler_tick();
    run_posix_cpu_timers(p);
}

复制代码


4. 定时器执行流程

这里讨论的定时器执行流程是动态定时器的执行流程。


4.1 定时器的定义

定时器在内核中用一个链表来保存的,链表的每个节点都是一个定时器。

参见头文件

复制代码

struct timer_list { struct list_head entry;
    unsigned long expires; void (*function)(unsigned long);
    unsigned long data; struct tvec_base *base;
#ifdef CONFIG_TIMER_STATS void *start_site; char start_comm[16]; int start_pid; #endif #ifdef CONFIG_LOCKDEP struct lockdep_map lockdep_map; #endif };

复制代码

通过加入条件编译的参数,可以追加一些调试信息。


4.2 定时器的生命周期

一个动态定时器的生命周期中,一般会经过下面的几个步骤:

timer_life

1. 初始化定时器:


struct timer_list my_timer; /* 定义定时器 */ init_timer(&my_timer); /* 初始化定时器 */


2. 填充定时器:


my_timer.expires = jiffies + delay; /* 定义超时的节拍数 */ my_timer.data = 0; /* 给定时器函数传入的参数 */ my_timer.function = my_function; /* 定时器超时时,执行的自定义函数 */ /* 从定时器结构体中,我们可以看出这个函数的原型应该如下所示: */ void my_function(unsigned long data);


3. 激活定时器和修改定时器:

激活定时器之后才会被触发,否则定时器不会执行。

修改定时器主要是修改定时器的延迟时间,修改定时器后,不管原先定时器有没有被激活,都会处于激活状态。


填充定时器结构之后,可以只激活定时器,也可以只修改定时器,也可以激活定时器后再修改定时器。

所以填充定时器结构和触发定时器之间的步骤,也就是虚线框中的步骤是不确定的。


add_timer(&my_timer); /* 激活定时器 */ mod_timer(&my_timer, jiffies + new_delay); /* 修改定时器,设置新的延迟时间 */


4. 触发定时器:

每次时钟中断处理程序会检查已经激活的定时器是否超时,如果超时就执行定时器结构中的自定义函数。


5. 删除定时器:

激活和未被激活的定时器都可以被删除,已经超时的定时器会自动删除,不用特意去删除。


/* * 删除激活的定时器时,此函数返回1
 * 删除未激活的定时器时,此函数返回0 */ del_timer(&my_timer);

在多核处理器上用 del_timer 函数删除定时器时,可能在删除时正好另一个CPU核上的时钟中断处理程序正在执行这个定时器,于是就形成了竞争条件。

为了避免竞争条件,建议使用 del_timer_sync 函数来删除定时器。

del_timer_sync 函数会等待其他处理器上的定时器处理程序全部结束后,才删除指定的定时器。


/* * 和del_timer 不同,del_timer_sync 不能在中断上下文中执行 */ del_timer_sync(&my_timer);


5. 实现程序延迟的方法

内核中有个利用定时器实现延迟的函数 schedule_timeout

这个函数会将当前的任务睡眠到指定时间后唤醒,所以等待时不会占用CPU时间。


/* 将任务设置为可中断睡眠状态 */ set_current_state(TASK_INTERRUPTIBLE); /* 小睡一会儿,“s“秒后唤醒 */ schedule_timeout(s*HZ);


查看 schedule_timeout 函数的实现方法,可以看出是如何使用定时器的。

复制代码

signed long __sched schedule_timeout(signed long timeout)
{ /* 定义一个定时器 */ struct timer_list timer;
    unsigned long expire; switch (timeout)
    { case MAX_SCHEDULE_TIMEOUT: /* * These two special cases are useful to be comfortable
         * in the caller. Nothing more. We could take
         * MAX_SCHEDULE_TIMEOUT from one of the negative value
         * but I' d like to return a valid offset (>=0) to allow
         * the caller to do everything it want with the retval. */ schedule(); goto out; default: /* * Another bit of PARANOID. Note that the retval will be
         * 0 since no piece of kernel is supposed to do a check
         * for a negative retval of schedule_timeout() (since it
         * should never happens anyway). You just have the printk()
         * that will tell you if something is gone wrong and where. */ if (timeout < 0) {
            printk(KERN_ERR "schedule_timeout: wrong timeout " "value %lx\n", timeout);
            dump_stack();
            current->state = TASK_RUNNING; goto out;
        }
    } /* 设置超时时间 */ expire = timeout + jiffies; /* 初始化定时器,超时处理函数是 process_timeout,后面再补充说明一下这个函数 */ setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); /* 修改定时器,同时会激活定时器 */ __mod_timer(&timer, expire, false, TIMER_NOT_PINNED); /* 将本任务睡眠,调度其他任务 */ schedule(); /* 删除定时器,其实就是 del_timer_sync 的宏
    del_singleshot_timer_sync(&timer);

    /* Remove the timer from the object tracker */ destroy_timer_on_stack(&timer);

    timeout = expire - jiffies; out: return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout); /* * 超时处理函数 process_timeout 里面只有一步操作,唤醒当前任务。
 * process_timeout 的参数其实就是 当前任务的地址 */ static void process_timeout(unsigned long __data)
{
    wake_up_process((struct task_struct *)__data);
}

复制代码

schedule_timeout 一般用于延迟时间较长的程序。

这里的延迟时间较长是对于计算机而言的,其实也就是延迟大于 1 个节拍(jiffies)。


对于某些极其短暂的延迟,比如只有1ms,甚至1us,1ns的延迟,必须使用特殊的延迟方法。

1s = 1000ms = 1000000us = 1000000000ns (1秒=1000毫秒=1000000微秒=1000000000纳秒)

假设 HZ=100,那么 1个节拍的时间间隔是 1/100秒,大概10ms左右。

所以对于那些极其短暂的延迟,schedule_timeout 函数是无法使用的。

好在内核对于这些短暂,精确的延迟要求也提供了相应的宏。


/* 具体实现参见 include/linux/delay.h
 * 以及 arch/x86/include/asm/delay.h */ #define mdelay(n) ... #define udelay(n) ... #define ndelay(n) ...

通过这些宏,可以简单的实现延迟,比如延迟 5ns,只需 ndelay(5); 即可。


这些短延迟的实现原理并不复杂,

首先,内核在启动时就计算出了当前处理器1秒能执行多少次循环,即 loops_per_jiffy

(loops_per_jiffy 的计算方法参见 init/main.c 文件中的 calibrate_delay 方法)。

然后算出延迟 5ns 需要循环多少次,执行那么多次空循环即可达到延迟的效果。


loops_per_jiffy 的值可以在启动信息中看到:


[root@vbox ~]# dmesg | grep delay
Calibrating delay loop (skipped), value calculated using timer frequency.. 6387.58 BogoMIPS (lpj=3193792)

我的虚拟机中看到 (lpj=3193792)


6. 定时器和延迟的例子

下面的例子测试了短延迟,自定义定时器以及 schedule_timeout 的使用:

复制代码

#include  #include  #include  #include  #include  #include "kn_common.h" MODULE_LICENSE("Dual BSD/GPL");

static void test_short_delay(void);
static void test_delay(void);
static void test_schedule_timeout(void);
static void my_delay_function(unsigned long);

static int testdelay_init(void)
{
    printk(KERN_ALERT "HZ in current system: %dHz\n", HZ); /* test short delay */ test_short_delay(); /* test delay */ test_delay(); /* test schedule timeout */ test_schedule_timeout();

    return 0;
}

static void testdelay_exit(void)
{
    printk(KERN_ALERT "*************************\n");
    print_current_time(0);
    printk(KERN_ALERT "testdelay is exited!\n");
    printk(KERN_ALERT "*************************\n");
}

static void test_short_delay()
{
    printk(KERN_ALERT "jiffies [b e f o r e] short delay: %lu", jiffies);
    ndelay(5);
    printk(KERN_ALERT "jiffies [a f t e r] short delay: %lu", jiffies);
}

static void test_delay()
{ /* 初始化定时器 */ struct timer_list my_timer;
    init_timer(&my_timer); /* 填充定时器 */ my_timer.expires = jiffies + 1*HZ; /* 2秒后超时函数执行 */ my_timer.data = jiffies;
    my_timer.function = my_delay_function; /* 激活定时器 */ add_timer(&my_timer);
}

static void my_delay_function(unsigned long data)
{
    printk(KERN_ALERT "This is my delay function start......\n");
    printk(KERN_ALERT "The jiffies when init timer: %lu\n", data);
    printk(KERN_ALERT "The jiffies when timer is running: %lu\n", jiffies);
    printk(KERN_ALERT "This is my delay function end........\n");
}

static void test_schedule_timeout()
{
    printk(KERN_ALERT "This sample start at : %lu", jiffies); /* 睡眠2秒 */ set_current_state(TASK_INTERRUPTIBLE);
    printk(KERN_ALERT "sleep 2s ....\n");
    schedule_timeout(2*HZ);

    printk(KERN_ALERT "This sample end at : %lu", jiffies);
}

module_init(testdelay_init);
module_exit(testdelay_exit);

复制代码

其中用到的 kn_common.h 和 kn_common.c 参见之前的博客 《Linux内核设计与实现》读书笔记(六)- 内核数据结构

Makefile如下:

复制代码

# must complile on customize kernel
obj-m += mydelay.o
mydelay-objs := testdelay.o kn_common.o

#generate the path
CURRENT_PATH:=$(shell pwd)
#the current kernel version number
LINUX_KERNEL:=$(shell uname -r)
#the absolute path
LINUX_KERNEL_PATH:=/usr/src/kernels/$(LINUX_KERNEL)
#complie object all: make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) modules rm -rf modules.order Module.symvers .*.cmd *.o *.mod.c .tmp_versions *.unsigned
#clean
clean: rm -rf modules.order Module.symvers .*.cmd *.o *.mod.c *.ko .tmp_versions *.unsigned

复制代码


执行测试命令及查看结果的方法如下:(我的测试系统是 CentOS 6.3 x64)

复制代码

[root@vbox chap11]# make [root@vbox chap11]# insmod mydelay.ko 
[root@vbox chap11]# rmmod mydelay.ko 
[root@vbox chap11]# dmesg | tail -14 HZ in current system: 1000Hz
jiffies [b e f o r e] short delay: 4296079617 jiffies [a f t e r] short delay: 4296079617 This sample start at : 4296079619 sleep 2s ....
This is my delay function start......
The jiffies when init timer: 4296079619 The jiffies when timer is running: 4296080621 This is my delay function end........
This sample end at : 4296081622 ************************* 2013-5-9 23:7:20 testdelay is exited!
*************************

复制代码


结果说明:

1. 短延迟只延迟了 5ns,所以执行前后的jiffies是一样的。


jiffies [b e f o r e] short delay: 4296079617 jiffies [a f t e r] short delay: 4296079617


2. 自定义定时器延迟了1秒后执行自定义函数,由于我的系统 HZ=1000,所以jiffies应该相差1000


The jiffies when init timer: 4296079619 The jiffies when timer is running: 4296080621

实际上jiffies相差了 1002,多了2个节拍


3. schedule_timeout 延迟了2秒,jiffies应该相差 2000


This sample start at : 4296079619 This sample end at : 4296081622

实际上jiffies相差了 2003,多了3个节拍


以上结果也说明了定时器的延迟并不是那么精确,差了2,3个节拍其实就是误差2,3毫秒(因为HZ=1000)

如果HZ=100的话,一个节拍是10毫秒,那么定时器的误差可能就发现不了了(误差只有2,3毫秒,没有超多1个节拍)。

阅读(976) | 评论(0) | 转发(1) |
给主人留下些什么吧!~~