Chinaunix首页 | 论坛 | 博客
  • 博客访问: 100131
  • 博文数量: 23
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 172
  • 用 户 组: 普通用户
  • 注册时间: 2013-03-27 21:38
个人简介

闵大荒搬砖中

文章分类

全部博文(23)

文章存档

2014年(4)

2013年(19)

我的朋友

分类: 信息化

2013-05-21 16:59:45

基本作图:
plot(x)、plot(x, y)    #散点图,最多两个变量
    #可使用参数type生成不同的效果图。常用‘l’、‘o’、‘h’,分别为折线图,点线图,垂线图。
    #'s'和'S'是折线图,前者是先水平后垂直,后者是先垂直后水平;'n'是不显示,用于画空白图
    #若需对三个以上变量两两作图,可先合并在一个数据框,再对数据框使用plot
    #例:r=data.frame(x,y,z); plot(r);
boxplot(x)、boxplot(x,y,z,...)    #箱式图,可使用多个参数将多个箱式图做在一起
coplot(x~y|z)    #在z的每个值或每个区间上做x与y的散点图
pairs(x)    #当x为矩阵时,做x各列之间的散点图
hist(x, freq)    #直方图。参数freq默认为TRUE,根据频数作图;若为FALSE,则据构成比(总和为1)作图。
barplot(table(x,y), beside=FALSE)    #对定性变量x、y做条图,默认堆积条图,使用beside=T则为并列条图。
qqnorm(x)    #QQ图(正态分位数-分位数图)
qqplot(x,y)    #y对x的分位数-分位数图
pie(table(x))    #对定性变量x做饼图
arrows    #在两点之间画箭头线,箭头与线段之间的夹角可调
segments    #在两点之间画线段

加参考线:    #低级绘图参数,直接在原图上修改
lines(x)、lines(x, y)    #添加折线
abline(lm(y~x))    #添加y对x的回归直线
abline(a,b)    #a为截距,b为斜率
abline(v=)    #添加垂直线
abline(h=)    #添加水平线

添加点:
points(x,y)    #低级绘图参数,直接在原图上修改

画曲线: 
1、curve(expr, from=0, to=1, n=101, add=FALSE)    
    例:curve(qnorm); curve(log); curve(x^2)    #第一个参数可以是函数,也可以是含x的表达式。 
    例:curve(x^2, 0, 100);    #from和to规定表达式或函数的自变量范围,默认0~1。 
    n:为自变量范围内取多少个点进行描图,n越大,曲线越平滑 
    add:当取值为TURE时,该曲线添加于前一图上。当两图的自变量取值范围不重合时,无法叠加。   
2、plot(fun, from=0, to=1) 
    用法和curve相似,但第一个参数不能使用含x的表达式。 

    注意在plot中尽量避免使用add参数。

使用参数pch设定点的样式
1、数字0~20,表示21种不同的符号
    curve(x/20,0,21,lty=0); for (i in 0:20) {points(i,0.5,pch=i);}
2、8个字符,表示8种点的样式
    curve(x/7,0,7,lty=0); chr=c('*','.','o','O','0','+','-','|');
    for (i in 0:7) {points(i,0.5,pch=chr[i+1])}
3、数字21~25,表示可以填充背景色的五种符号,需和参数bg联用
    curve(x/4,0,4,lty=0); for (i in 0:4) {points(i,0.5,pch=21+i,bg=sample(colors(),1))}

使用参数col设定颜色
    例:plot(dnorm, col='red')
    使用sort(colors())可以查看所有已命名的颜色   

使用参数lty设定线型
1、简单取值可以使用0~6
    curve(x*8,0,1,lty=0); for (i in 1:16) {abline(h=i/2,lty=i);}
    #0表示空白,随取值增大,6种线型循环出现
2、使用十六进制数字组成的字符串
    长度只能是偶数位,最长8位;奇数位为表示实线长度,偶数位表示空白长度
    注意:需要引号;不能有0。
    curve(x^2,0,1,lty='32';)    #3单位实线和2单位空白循环
    curve(x^2,0,1,lty='32AA';)    #3单位实线、2单位空白、10单位实线、10单位空白循环

使用参数bty设定边框
    bty='o'    #默认显示四条边框
    bty='l'    #不显示右上两条边框,例:curve(x^2,0,1,bty='l')
    bty='n'    #不显示边框

使用参数xlab和ylab修改坐标轴的意义
    curve(x*5,0,1,xlab='',ylab='',lty=0)    #不显示坐标轴的符号

添加图例
1、图例在作图区域内
     legend(x,y,legend,pch,col,lty,ncol=1,bty='o')
          #x,y为图例左上角的坐标,也可以使用以下字符来标记特殊位置:"bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center"
          #legend是图例的文字,一般是一个字符向量
          #pch,col,lty是图中所用的样式
          #ncol是图例的列数,bty指明图例的边框显示
    例:
    curve(x*8,0,1,lty=0); for (i in 1:6) {abline(h=i/2,lty=i);}
    legend(0,8,legend=letters[c(1:6)],lty=1:6,bty='n');
2、图例在作图区域外
    需使用par修改参数mar和pty。同时还需要修改参数xpd。
    默认mar=c(5,4,4,2)+0.1,即图形下左上右四个边界的宽度分别为5.1,4.1,4.1,2.1厘米。
    默认pty='m',即最大化作图区域,取值为's'则限制作图区域为方形。
    默认xpd=FALSE,即不允许在作图区域外作图,改为TRUE即可。
    例:
    op=par();     #保存par的原值
    par(mar=c(5,4,4,5),pty='s');    #准备在图形右边添加图例
    curve(x*8,0,1,lty=0); for (i in 1:16) {abline(h=i/2,lty=i);}
    legend(1.02,4,legend=letters[c(1:6)],lty=1:6,bty='n',xpd=T);
    par(op);    #恢复par的原值

曲线拟合:(线性回归方法:lm)
1、x排序
2、求线性回归方程并赋予一个新变量
    z=lm(y~x+I(x^2)+...)
3、plot(x,y)    #做y对x的散点图
4、lines(x,fitted(z))    #添加拟合值对x的散点图并连线

曲线拟合:(nls)
lm是将曲线直线化再做回归,nls是直接拟合曲线。
需要三个条件:曲线方程、数据位置、系数的估计值。
如果曲线方程比较复杂,可以先命名一个自定义函数。
例:
    f=function(x1, x2, a, b) {a+x1+x2^b};
    result=nls(x$y~f(x$x1, x$x2, a, b), data=x, start=list(a=1, b=2));
        #x可以是数据框或列表,但不能是矩阵
        #对系数的估计要尽量接近真实值,如果相差太远会报错:“奇异梯度”
    summary(result);    #结果包含对系数的估计和p值
根据估计的系数直接在散点图上使用lines加曲线即可。

曲线拟合:(局部回归)
lowess(x, y=NULL, f = 2/3, iter = 3)
    #可以只包含x,也可使用x、y两个变量
    #f为窗宽参数,越大越平滑
    #iter为迭代次数,越大计算越慢
loess(y~x, data, span=0.75, degree=2)
    #data为包含x、y的数据集;span为窗宽参数
    #degree默认为二次回归
    #该方法计算1000个数据点约占10M内存
举例:
x=seq(0, 10, 0.1); y=sin(x)+rnorm(101)    #x的值必须排序
plot(x,y);    #做散点图
lines(lowess(x,y));    #利用lowess做回归曲线
lines(x,predict(loess(y~x)));    #利用loess做回归曲线,predict是取回归预测值
z=loess(y~x); lines(x, z$fit);    #利用loess做回归曲线的另一种做法

核密度估计曲线
1、hist(x, freq=FALSE)    #根据构成比做直方图
2、核密度估计
density(x,
    bw='nrd0',    #设置窗宽,默认为‘nrd0’(只是为了兼容,并不是推荐数值),可尝试不同数字选择最合适的。
    kernel = c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight", "cosine", "optcosine"), 
    #选择列表中的一种计算方法,默认为第一种。方法名称可使用首字母代替。
    weights)    #给不同的x值赋予权重,长度和x相同。默认权重相同。
例:a=density(x,bw=0.5, kernel='c');
3、lines(a)    #添加核密度曲线

阅读(1068) | 评论(0) | 转发(0) |
1

上一篇:vi 移动、选择、复制

下一篇:R data frame

给主人留下些什么吧!~~