全部博文(200)
分类: C/C++
2013-04-12 10:02:29
原文地址:算法导论(三)--函数的增长 作者:yourtommy
前面看到用于表示运行时间的Ө记号,现在给出它的定义:
Ө(g(n)) = { f(n):存在正常数c1,c2和n0,使对所有的n≥n0,有0≤c1*g(n)≤f(n)≤c2*g(n) }。
从
定义上看,Ө(g(n))是一个集合,g(n)是一个函数,而f(n)为Ө(g(n))集合里的一个元素,可以写成“
f(n)∈Ө(g(n))”,但通常我们直接写成“f(n)=Ө(g(n))”。比如我们某个算法的运行时间为f(n) =
2n^2+3n+5,我们要证明f(n)属于Ө(n^2),即g(n)=n^2:当n大于某值时,应该满足条件 c1*n^2 ≤ 2n^2 + 3n +
5 ≤ c2*n^2。我们选择c1=1,c2=3,当n≥5时,不等式成立。所以我们可以说f(n) = 2n^2+3n+5 = Ө(n^2)。
对于任何一个多项式p(n) = ∑ai*n^i (i=0→d),当ad大于0(即最高次项的系数大于0)时,p(n) = Ө(n^d)。换而言之,二次项系数为正的二次多项式属于Ө(n^2),三次项系数为正的三次多项式属于Ө(n^3)。
Ө记号渐近给出了一个函数的上界和下界。当只有渐近上界时,使用O记号。它的定义为:
O(g(n)) = { f(n):存在正常数c和n0,使对所有的n≥n0,有0 ≤ f(n) ≤ c*g(n) }。
相应的,Ω记号给出了渐近下界:
Ω(g(n)) = { f(n):存在正常数c和n0,使对所有的n≥n0,有0 ≤ c*g(n) ≤ f(n) }。
O记号在提供的渐近上界可能是也可能不是渐近紧确的。例如2n^2 = O(n^2)是渐近紧确的,而2n=O(n^2)就不是渐近紧确的。o记号(小写字母o)表示非渐近紧确的上界:
o(g(n)) = { f(n):对任意正常数c,存在常数n0>0,使对所有的n≥n0,有0 ≤ f(n) ≤ c*g(n) }。
注意到这里是任意正常数c,而不是存在正常数c。这是它与O记号的区别。
当n趋于无穷时,函数f(n)相对于g(n)就不重要了,即 lim(f(n)/g(n)) = 0 (n→∞)。
渐近记号的一些性质:
传递性:
f(n) = Ө(g(n)) 和 g(n) = Ө(h(n)) => f(n) = Ө(h(n))
f(n) = O(g(n)) 和 g(n) = O(h(n)) => f(n) = O(h(n))
f(n) = Ω(g(n)) 和 g(n) = Ω(h(n)) => f(n) = Ω(h(n))
f(n) = o(g(n)) 和 g(n) = o(h(n)) => f(n) = o(h(n))
f(n) = ω(g(n)) 和 g(n) = ω(h(n)) => f(n) = ω(h(n))
自反性:
f(n) = Ө(f(n))
f(n) = O(f(n))
f(n) = Ω(f(n))
对称性:
f(n) = Ө(g(n)) 当且仅当 g(n) = Ө(f(n))
转置对称性:
f(n) = O(g(n)) 当且仅当 g(n) = Ω(f(n))
f(n) = o(g(n)) 当且仅当 g(n) = ω(f(n))