分类: C/C++
2013-03-06 10:47:36
没法,组合数学还考幻方构造。这东西不看解法真不会写,虽然没见有啥用,但还是记录下,免得日后再找。按目前填写幻方的方法,是把幻方分成了三类,即奇数阶幻方、双偶阶幻方、单偶阶幻方。下面按这三类幻方,列出最常用解法(考试用,不求强大,只求有效!)。
奇数阶幻方最经典的填法是罗伯法。填写的方法是:
把1(或最小的数)放在第一行正中; 按以下规律排列剩下的(n×n-1)个数:
1、每一个数放在前一个数的右上一格;
2、如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;
3、如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;
4、如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内;
5、如果这个数所要放的格已经有数填入,那么就把它放在前一个数的下一行同一列的格内。
例,用该填法获得的5阶幻方:
17 | 24 | 1 | 8 | 15 |
23 | 5 | 7 | 14 | 16 |
4 | 6 | 13 | 20 | 22 |
10 | 12 | 19 | 21 | 3 |
11 | 18 | 25 | 2 | 9 |
所谓双偶阶幻方就是当n可以被4整除时的偶阶幻方,即4K阶幻方。在说解法之前我们先说明一个“互补数”定义:就是在 n 阶幻方中,如果两个数的和等于幻方中最大的数与 1 的和(即 n×n+1),我们称它们为一对互补数 。如在三阶幻方中,每一对和为 10 的数,是一对互补数 ;在四阶幻方中,每一对和为 17 的数,是一对互补数 。
双偶数阶幻方的对称交换解法:
先看看4阶幻方的填法:将数字从左到右、从上到下按顺序填写:
1 | 2 | 3 | 4 |
5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 |
16 | 2 | 3 | 13 |
5 | 11 | 10 | 8 |
9 | 7 | 6 | 12 |
4 | 14 | 15 | 1 |
以8阶幻方为例:
(1) 先把数字按顺序填。然后,按4×4把它分割成4块(如图)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |
57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |
64 | 2 | 3 | 61 | 60 | 6 | 7 | 57 |
9 | 55 | 54 | 12 | 13 | 51 | 50 | 16 |
17 | 47 | 46 | 20 | 21 | 43 | 42 | 24 |
40 | 26 | 27 | 37 | 36 | 30 | 31 | 33 |
32 | 34 | 35 | 29 | 28 | 38 | 39 | 25 |
41 | 23 | 22 | 44 | 45 | 19 | 18 | 48 |
49 | 15 | 14 | 52 | 53 | 11 | 10 | 56 |
8 | 58 | 59 | 5 | 4 | 62 | 63 | 1 |
以n=10为例,10=4×2+2,这时k=2
(1)把方阵分为A,B,C,D四个象限,这样每一个象限肯定是奇数阶。用罗伯法,依次在A象限,D象限,B象限,C象限按奇数阶幻方的填法填数。
(2)在A象限的中间行、中间格开始,按自左向右的方向,标出k格。A象限的其它行则标出最左边的k格。将这些格,和C象限相对位置上的数,互换位置。
(3)在B象限任一行的中间格,自右向左,标出k-1列。(注:6阶幻方由于k-1=0,所以不用再作B、D象限的数据交换), 将B象限标出的这些数,和D象限相对位置上的数进行交换,就形成幻方。
下面是6阶幻方的填法:6=4×1+2,这时k=1
注:摘自http://tanglizeng.blog.163.com/,仅保留了最简单有效解法