我是一只小白兔~
分类: NOSQL
2016-07-27 09:14:51
NoSQL用于超大规模数据的存储。(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。
2.RDBMS vs NoSQL
RDBMS
- 高度组织化结构化数据
- 结构化查询语言(SQL) (SQL)
- 数据和关系都存储在单独的表中。
- 数据操纵语言,数据定义语言
- 严格的一致性
- 基础事务
NoSQL
- 代表着不仅仅是SQL
- 没有声明性查询语言
- 没有预定义的模式
-键 - 值对存储,列存储,文档存储,图形数据库
- 最终一致性,而非ACID属性
- 非结构化和不可预知的数据
- CAP定理
- 高性能,高可用性和可伸缩性
在计算机科学中, CAP定理(CAP theorem), 又被称作 布鲁尔定理(Brewer's theorem), 它指出对于一个分布式计算系统来说,不可能同时满足以下三点:
(1)一致性(Consistency) (所有节点在同一时间具有相同的数据)
(2)可用性(Availability) (保证每个请求不管成功或者失败都有响应)
(3)分隔容忍(Partition tolerance) (系统中任意信息的丢失或失败不会影响系统的继续运作)
CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,最多只能同时较好的满足两个。
因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:
(1)CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。
(2)CP - 满足一致性,分区容忍必的系统,通常性能不是特别高。
(3)AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。
4.NoSQL的优缺点
【优点】
高可扩展性
分布式计算
低成本
架构的灵活性,半结构化数据
没有复杂的关系
【缺点】
没有标准化
有限的查询功能(到目前为止)
最终一致是不直观的程序
5.NoSQL数据库的分类
Hbase
Cassandra
Hypertable
顾名思义,是按列存储数据的。最大的特点是方便存储结构化和半结构化数据,方便做数据压缩,对针对某一列或者某几列的查询有非常大的IO优势。
文档存储
MongoDB
CouchDB
文档存储一般用类似json的格式存储,存储的内容是文档型的。这样也就有有机会对某些字段建立索引,实现关系数据库的某些功能。
key-value存储
Tokyo Cabinet / Tyrant
Berkeley DB
MemcacheDB
Redis
可以通过key快速查询到其value。一般来说,存储不管value的格式,照单全收。(Redis包含了其他功能)
图存储
Neo4J
FlockDB
图形关系的最佳存储。使用传统关系数据库来解决的话性能低下,而且设计使用不方便。
对象存储
db4o
Versant
通过类似面向对象语言的语法操作数据库,通过对象的方式存取数据。
xml数据库
Berkeley DB XML
BaseX
高效的存储XML数据,并支持XML的内部查询语法,比如XQuery,Xpath。
类型
部分代表
特点
列存储
一个mongodb中可以建立多个数据库。
MongoDB的默认数据库为"db",该数据库存储在data目录中。
MongoDB的单个实例可以容纳多个独立的数据库,每一个都有自己的集合和权限,不同的数据库也放置在不同的文件中。
show dbs:显示所有数据的列表。
db :显示当前数据库对象或集合。RDBMS | MongoDB |
---|---|
数据库 | 数据库 |
表格 | 集合 |
行 | 文档 |
列 | 字段 |
表联合 | 嵌入文档 |
主键 | 主键 (MongoDB 提供了 key 为 _id ) |
数据库服务和客户端 | |
Mysqld/Oracle | mongod |
mysql/sqlplus | mongo |
需要注意的是:
文档键命名规范:
集合就是 MongoDB 文档组,类似于 RDBMS (关系数据库管理系统:Relational Database Management System)中的表格。
集合存在于数据库中,集合没有固定的结构,这意味着你在对集合可以插入不同格式和类型的数据,但通常情况下我们插入集合的数据都会有一定的关联性。
比如,我们可以将以下不同数据结构的文档插入到集合中:
{"site":""} {"site":"","name":"Google"} {"site":"","name":"菜鸟教程","num":5}
当第一个文档插入时,集合就会被创建。
如下实例:
db.col.findOne()
Capped collections 就是固定大小的collection。
它有很高的性能以及队列过期的特性(过期按照插入的顺序). 有点和 "RRD" 概念类似。
Capped collections是高性能自动的维护对象的插入顺序。它非常适合类似记录日志的功能 和标准的collection不同,你必须要显式的创建一个capped collection, 指定一个collection的大小,单位是字节。collection的数据存储空间值提前分配的。
db.createCollection("mycoll", {capped:true, size:100000})
dbname.system.*
在MongoDB数据库中名字空间 .system.* 是包含多种系统信息的特殊集合(Collection),如下:
集合命名空间 | 描述 |
---|---|
dbname.system.namespaces | 列出所有名字空间。 |
dbname.system.indexes | 列出所有索引。 |
dbname.system.profile | 包含数据库概要(profile)信息。 |
dbname.system.users | 列出所有可访问数据库的用户。 |
dbname.local.sources | 包含复制对端(slave)的服务器信息和状态。 |
对于修改系统集合中的对象有如下限制。
在{{system.indexes}}插入数据,可以创建索引。但除此之外该表信息是不可变的(特殊的drop index命令将自动更新相关信息)。
{{system.users}}是可修改的。 {{system.profile}}是可删除的。
下表为MongoDB中常用的几种数据类型。
数据类型 | 描述 |
---|---|
String | 字符串。存储数据常用的数据类型。在 MongoDB 中,UTF-8 编码的字符串才是合法的。 |
Integer | 整型数值。用于存储数值。根据你所采用的服务器,可分为 32 位或 64 位。 |
Boolean | 布尔值。用于存储布尔值(真/假)。 |
Double | 双精度浮点值。用于存储浮点值。 |
Min/Max keys | 将一个值与 BSON(二进制的 JSON)元素的最低值和最高值相对比。 |
Arrays | 用于将数组或列表或多个值存储为一个键。 |
Timestamp | 时间戳。记录文档修改或添加的具体时间。 |
Object | 用于内嵌文档。 |
Null | 用于创建空值。 |
Symbol | 符号。该数据类型基本上等同于字符串类型,但不同的是,它一般用于采用特殊符号类型的语言。 |
Date | 日期时间。用 UNIX 时间格式来存储当前日期或时间。你可以指定自己的日期时间:创建 Date 对象,传入年月日信息。 |
Object ID | 对象 ID。用于创建文档的 ID。 |
Binary Data | 二进制数据。用于存储二进制数据。 |
Code | 代码类型。用于在文档中存储 JavaScript 代码。 |
Regular expression | 正则表达式类型。用于存储正则表达式。 |
MongoDB 创建数据库的语法格式如下:
use DATABASE_NAME
db.dropDatabase()
删除集合语法格式如下:
db.collection.drop()
db.COLLECTION_NAME.insert(document)
以下文档可以存储在 MongoDB 的 runoob 数据库 的 col集合中:
点击(此处)折叠或打开
> db.col.find()也可以将数据定义为一个变量,如下所示:
点击(此处)折叠或打开
执行插入操作:
> db.col.insert(document) WriteResult({ "nInserted" : 1 }) >
插入文档你也可以使用 db.col.save(document) 命令。如果不指定 _id 字段 save() 方法类似于 insert() 方法。如果指定 _id 字段,则会更新该 _id 的数据。