接STEP-8, 需求是一样的,SELECT算法的最坏复杂度是O(n?),快速SELECT算法是最坏情况为线性时间的选择算法。
快速SELECT是为了解决在RANDOM SELECT算法中的最坏情况,即每次都取最大/最小 值作为pivot。
* 箭头为 大->小。 阴影部分为确定比X大的部分
-
//copyright@ yansha && July && 飞羽
-
//July、updated,2011.05.19.清晨。
-
//版权所有,引用必须注明出处:http://blog.csdn.net/v_JULY_v。
-
#include <iostream>
-
#include <time.h>
-
using namespace std;
-
-
const int num_array = 13;
-
const int num_med_array = num_array / 5 + 1;
-
int array[num_array];
-
int midian_array[num_med_array];
-
-
//冒泡排序(晚些时候将修正为插入排序)
-
/*void insert_sort(int array[], int left, int loop_times, int compare_times)
-
{
-
for (int i = 0; i < loop_times; i++)
-
{
-
for (int j = 0; j < compare_times - i; j++)
-
{
-
if (array[left + j] > array[left + j + 1])
-
swap(array[left + j], array[left + j + 1]);
-
}
-
}
-
}*/
-
-
/*
-
//插入排序算法伪代码
-
INSERTION-SORT(A) cost times
-
1 for j ← 2 to length[A] c1 n
-
2 do key ← A[j] c2 n - 1
-
3 Insert A[j] into the sorted sequence A[1 ‥ j - 1]. 0...n - 1
-
4 i ← j - 1 c4 n - 1
-
5 while i > 0 and A[i] > key c5
-
6 do A[i + 1] ← A[i] c6
-
7 i ← i - 1 c7
-
8 A[i + 1] ← key c8 n - 1
-
*/
-
//已修正为插入排序,如下:
-
void insert_sort(int array[], int left, int loop_times)
-
{
-
for (int j = left; j < left+loop_times; j++)
-
{
-
int key = array[j];
-
int i = j-1;
-
while ( i>left && array[i]>key )
-
{
-
array[i+1] = array[i];
-
i--;
-
}
-
array[i+1] = key;
-
}
-
}
-
-
int find_median(int array[], int left, int right)
-
{
-
if (left == right)
-
return array[left];
-
-
int index;
-
for (index = left; index < right - 5; index += 5)
-
{
-
insert_sort(array, index, 4);
-
int num = index - left;
-
midian_array[num / 5] = array[index + 2];
-
}
-
-
// 处理剩余元素
-
int remain_num = right - index + 1;
-
if (remain_num > 0)
-
{
-
insert_sort(array, index, remain_num - 1);
-
int num = index - left;
-
midian_array[num / 5] = array[index + remain_num / 2];
-
}
-
-
int elem_aux_array = (right - left) / 5 - 1;
-
if ((right - left) % 5 != 0)
-
elem_aux_array++;
-
-
// 如果剩余一个元素返回,否则继续递归
-
if (elem_aux_array == 0)
-
return midian_array[0];
-
else
-
return find_median(midian_array, 0, elem_aux_array);
-
}
-
-
// 寻找中位数的所在位置
-
int find_index(int array[], int left, int right, int median)
-
{
-
for (int i = left; i <= right; i++)
-
{
-
if (array[i] == median)
-
return i;
-
}
-
return -1;
-
}
-
-
int q_select(int array[], int left, int right, int k)
-
{
-
// 寻找中位数的中位数
-
int median = find_median(array, left, right);
-
-
// 将中位数的中位数与最右元素交换
-
int index = find_index(array, left, right, median);
-
swap(array[index], array[right]);
-
-
int pivot = array[right];
-
-
// 申请两个移动指针并初始化
-
int i = left;
-
int j = right - 1;
-
-
// 根据枢纽元素的值对数组进行一次划分
-
while (true)
-
{
-
while(array[i] < pivot)
-
i++;
-
while(array[j] > pivot)
-
j--;
-
if (i < j)
-
swap(array[i], array[j]);
-
else
-
break;
-
}
-
swap(array[i], array[right]);
-
-
/* 对三种情况进行处理:(m = i - left + 1)
-
1、如果m=k,即返回的主元即为我们要找的第k小的元素,那么直接返回主元a[i]即可;
-
2、如果m>k,那么接下来要到低区间A[0....m-1]中寻找,丢掉高区间;
-
3、如果m<k,那么接下来要到高区间A[m+1...n-1]中寻找,丢掉低区间。
-
*/
-
int m = i - left + 1;
-
if (m == k)
-
return array[i];
-
else if(m > k)
-
//上条语句相当于if( (i-left+1) >k),即if( (i-left) > k-1 ),于此就与2.2节里的代码实现一、二相对应起来了。
-
return q_select(array, left, i - 1, k);
-
else
-
return q_select(array, i + 1, right, k - m);
-
}
-
-
int main()
-
{
-
//srand(unsigned(time(NULL)));
-
//for (int j = 0; j < num_array; j++)
-
//array[j] = rand();
-
-
int array[num_array]={0,45,78,55,47,4,1,2,7,8,96,36,45};
-
// 寻找第k最小数
-
int k = 4;
-
int i = q_select(array, 0, num_array - 1, k);
-
cout << i << endl;
-
-
return 0;
-
}
阅读(628) | 评论(0) | 转发(0) |