**转载请注明**
第三章在讨论一些定义和理论,一些标记方法:
f(n) = O(g(n)) is like a<=b
f(
n) = Ω(g(n)) is like a>=b
f(n) = Θ(g(n)) is like a=b
f(n) = o(g(n)) is like a
f(n) = ω(g(n)) is like a>b
======================= 分割线 ===========================
继续算法
求最大字数组:(假如你有一次机会去买去卖股票,图形如下,找出能获得最大收益的卖出买入点)
原理:
提到这个算法实际是为了验证divide-and-conquer这种概念。
在price中引入了change。(即变化)
随便在change数组之间找个中间点,假如为: mid。
假设数组为 [low, high]。 最大子数组结果为 [i, j](i>=low, j<=high)。那么我们找到mid后,只有三种情况:
1. i , j 都小于 mid
2. i , j 都大于 mid
3. i 小于 mid,j 大于 mid
对于1,2,那就接着取新的mid。对于3,从mid向左,以mid为准,取连续的最大的子数组;以mid+1为准,向右取最大,加一起。
比较1,2,3.
-
#include <iostream>
-
-
using namespace std;
-
-
// I think if there is a struct stores these int[3] will be the best.
-
// That would be: max subarr of left point ; right point ; max calculated values
-
// Anyway, this worked
-
-
int* FIND_MAX_CROSSING_SUBARRAY( int*, int, int, int ); // left point ; right point ; max value
-
int* FIND_MAXIMUM_SUBARRAY( int*, int, int ); // as well
-
-
int main(){
-
int a[] = {13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7};
-
int* subarr = new int[3];
-
-
subarr = FIND_MAXIMUM_SUBARRAY(a, 0, sizeof(a)/sizeof(int)-1);
-
-
for (int i = subarr[0]; i <= subarr[1]; i++){
-
cout << a[i] << endl;
-
}
-
return 0;
-
}
-
-
int* FIND_MAX_CROSSING_SUBARRAY( int* array, int low, int mid, int high ){
-
int max_left = INT_MIN, max_right = INT_MIN;
-
int max_left_p = mid, max_right_p = mid+1;
-
for( int i = mid, max = 0; i >= low; i-- ){
-
max += array[i];
-
if ( max_left < max ){
-
max_left_p = i;
-
max_left = max;
-
}
-
}
-
-
for( int i = mid+1, max = 0; i <= high; i++){
-
max += array[i];
-
if ( max_right < max ){
-
max_right_p = i;
-
max_right = max;
-
}
-
}
-
-
int* max_subarr = new int[3];
-
max_subarr[0] = max_left_p;
-
max_subarr[1] = max_right_p;
-
max_subarr[2] = max_left + max_right;
-
-
return max_subarr; // left point ; right point ; max value
-
}
-
-
int* FIND_MAXIMUM_SUBARRAY( int* array, int low, int high ){
-
if ( low == high ){ // only one item in array then return this as the biggest
-
int* max_subarr = new int[3];
-
max_subarr[0] = low;
-
max_subarr[1] = high;
-
max_subarr[2] = array[low];
-
return max_subarr;
-
} else{
-
int mid = (high-low)/2+low; // set mid point as floor of half high and low
-
int *left = new int[3], *right = new int[3], *cross = new int[3];
-
-
left = FIND_MAXIMUM_SUBARRAY(array, low, mid);
-
right = FIND_MAXIMUM_SUBARRAY(array, mid+1, high);
-
cross = FIND_MAX_CROSSING_SUBARRAY(array, low, mid, high);
-
-
if ( left[2] > right[2] && left[2] > cross[2] ){
-
return left;
-
} else if ( right[2] > left[2] && right[2] > cross[2] ){
-
return right;
-
} else {
-
return cross;
-
}
-
}
-
}
运行结果:
空间复杂度: // 跟归并一样
O(n)
时间复杂度:
O(nlgn)
阅读(529) | 评论(0) | 转发(0) |