通过对stm32内部的flash的读写可以实现对stm32的编程操作。
stm32 的内置可编程Flash在许多场合具有十分重要的意义。如其支持ICP特性使得开发人员对stm32可以警醒调试开发,可以通过JTAG和SWD接口对stm32进行程序烧写;支持IAP特性使得开发人员可以在stm32运行程序的时候对其内部程序进行更新操作。对一些对数据安全有要求的场合,可编程FLASH可以结合stm32内部唯一的身份标识实现各种各样的防破解方案。并且stm32的FLASH在一些轻量级的防掉电存储方案中也有立足之地。
stm32的FLASH分为主存储块和信息块。主存储块用于保存具体的程序代码和用户数据,信息块用于负责由stm32出厂是放置2KB的启动程序(Bootloader)和512B的用户配置信息区。
主存储块是以页为单位划分的,一页大小为1KB。范围为从地址0x08000000开始的128KB内。
对Flash 的写入操作要 “先擦除后写入”的原则;
stm32的内置flash 编程操作都是以页为单位写入的,而写入的操作必须要以16位半字宽度数据位单位,允许跨页写,写入非16位数据时将导致stm32内部总线错误。
进行内置flash读写时,必须要打开内部Rc振荡器。
main.c:
001
|
#include "stm32f10x.h"
|
006
|
void RCC_Configuration(void);
|
007
|
void GPIO_Configuration(void);
|
008
|
void USART_Configuration(void);
|
012
|
u16 data[5]={0x0001,0x0002,0x0003,0x0004,0x0005};
|
017
|
GPIO_Configuration();
|
018
|
USART_Configuration();
|
024
|
FLASH_ClearFlag(FLASH_FLAG_EOP|FLASH_FLAG_PGERR|FLASH_FLAG_WRPRTERR);
|
026
|
FLASH_ErasePage(0x8002000);
|
030
|
FLASH_ProgramHalfWord((0x8002000 +count*2),data[count]); //flash 为一个字节存储,16位数据必须地址加2
|
040
|
printf("\r\n The Five Data Is : \r\n");
|
045
|
printf("\r %d \r",*(u8 *)(0x8002000 + count*2)); //读取方法
|
056
|
void GPIO_Configuration(void)
|
058
|
GPIO_InitTypeDef GPIO_InitStructure;
|
060
|
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
|
062
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
|
063
|
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
|
064
|
GPIO_Init(GPIOA , &GPIO_InitStructure);
|
066
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
|
067
|
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
|
068
|
GPIO_Init(GPIOA , &GPIO_InitStructure);
|
071
|
void RCC_Configuration(void)
|
073
|
/* 定义枚举类型变量 HSEStartUpStatus */
|
074
|
ErrorStatus HSEStartUpStatus;
|
079
|
RCC_HSEConfig(RCC_HSE_ON);
|
081
|
HSEStartUpStatus = RCC_WaitForHSEStartUp();
|
082
|
/* 判断HSE起是否振成功,是则进入if()内部 */
|
083
|
if(HSEStartUpStatus == SUCCESS)
|
085
|
/* 选择HCLK(AHB)时钟源为SYSCLK 1分频 */
|
086
|
RCC_HCLKConfig(RCC_SYSCLK_Div1);
|
087
|
/* 选择PCLK2时钟源为 HCLK(AHB) 1分频 */
|
088
|
RCC_PCLK2Config(RCC_HCLK_Div1);
|
089
|
/* 选择PCLK1时钟源为 HCLK(AHB) 2分频 */
|
090
|
RCC_PCLK1Config(RCC_HCLK_Div2);
|
092
|
FLASH_SetLatency(FLASH_Latency_2);
|
094
|
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
|
095
|
/* 选择锁相环(PLL)时钟源为HSE 1分频,倍频数为9,则PLL输出频率为 8MHz * 9 = 72MHz */
|
096
|
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
|
100
|
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);
|
101
|
/* 选择SYSCLK时钟源为PLL */
|
102
|
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
|
103
|
/* 等待PLL成为SYSCLK时钟源 */
|
104
|
while(RCC_GetSYSCLKSource() != 0x08);
|
106
|
/* 打开APB2总线上的GPIOA时钟*/
|
107
|
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_USART1, ENABLE);
|
109
|
//RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
|
111
|
//RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR,ENABLE);
|
112
|
//RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR|RCC_APB1Periph_BKP|RCC_APB1Periph_WWDG, ENABLE);
|
117
|
void USART_Configuration(void)
|
119
|
USART_InitTypeDef USART_InitStructure;
|
120
|
USART_ClockInitTypeDef USART_ClockInitStructure;
|
122
|
USART_ClockInitStructure.USART_Clock = USART_Clock_Disable;
|
123
|
USART_ClockInitStructure.USART_CPOL = USART_CPOL_Low;
|
124
|
USART_ClockInitStructure.USART_CPHA = USART_CPHA_2Edge;
|
125
|
USART_ClockInitStructure.USART_LastBit = USART_LastBit_Disable;
|
126
|
USART_ClockInit(USART1 , &USART_ClockInitStructure);
|
128
|
USART_InitStructure.USART_BaudRate = 9600;
|
129
|
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
|
130
|
USART_InitStructure.USART_StopBits = USART_StopBits_1;
|
131
|
USART_InitStructure.USART_Parity = USART_Parity_No;
|
132
|
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
|
133
|
USART_InitStructure.USART_Mode = USART_Mode_Rx|USART_Mode_Tx;
|
134
|
USART_Init(USART1,&USART_InitStructure);
|
136
|
USART_Cmd(USART1,ENABLE);
|
141
|
int fputc(int ch,FILE *f)
|
143
|
USART_SendData(USART1,(u8) ch);
|
144
|
while(USART_GetFlagStatus(USART1,USART_FLAG_TC) == RESET);
|
阅读(947) | 评论(0) | 转发(0) |