1. 基本机制 1)数据结构 struct notifier_block { int (*notifier_call)(struct notifier_block *self, unsigned long, void *); struct notifier_block *next; int priority; /*用于对注册者进行优先级排队,高优先级的处理例程将被优先执行,由注册者自己指定 */ }; 2)基本例程 extern int notifier_chain_register(struct notifier_block **list, struct notifier_block *n); 说明:注册到某个notifier_block链;这时的n可以只要初始化(*notifier_call)指针; extern int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n); 说明:从某个notifier_block链中移去n; extern int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v); 说明:轮循执行某个notifier_block链中的所有notifier_block,对其(*notifier_call)传入参数val和*v; 其中val应该是EVENT NUMBER,而*v是导致这个事件的数据结构,比如某个网络设备UP,则val=NETDEV_UP,v=dev; 3)返回值 #define NOTIFY_DONE 0x0000 /* Don't care */ #define NOTIFY_OK 0x0001 /* Suits me */ #define NOTIFY_STOP_MASK 0x8000 /* Don't call further */ #define NOTIFY_BAD (NOTIFY_STOP_MASK|0x0002) /* Bad/Veto action */
4)已定义事件 /* * Declared notifiers so far. I can imagine quite a few more chains * over time (eg laptop power reset chains, reboot chain (to clean * device units up), device [un]mount chain, module load/unload chain, * low memory chain, screenblank chain (for plug in modular screenblankers) * VC switch chains (for loadable kernel svgalib VC switch helpers) etc... */
/* netdevice notifier chain */ #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ #define NETDEV_DOWN 0x0002 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface detected a hardware crash and restarted - we can use this eg to kick tcp sessions once done */ #define NETDEV_CHANGE 0x0004 /* Notify device state change */ #define NETDEV_REGISTER 0x0005 #define NETDEV_UNREGISTER 0x0006 #define NETDEV_CHANGEMTU 0x0007 #define NETDEV_CHANGEADDR 0x0008 #define NETDEV_GOING_DOWN 0x0009 #define NETDEV_CHANGENAME 0x000A
#define SYS_DOWN 0x0001 /* Notify of system down */ #define SYS_RESTART SYS_DOWN #define SYS_HALT 0x0002 /* Notify of system halt */ #define SYS_POWER_OFF 0x0003 /* Notify of system power off */
2. 举例分析 以网络设备的通知信息块netdev_chain为例来说明如何使用notification机制。 在net/core/dev.c中定义了netdev_chain链: static struct notifier_block *netdev_chain=NULL; 提供别的模块的接口,以便它们使用netdev_chain链: /* * Device change register/unregister. These are not inline or static * as we export them to the world. */
/** * register_netdevice_notifier - register a network notifier block * @nb: notifier * * Register a notifier to be called when network device events occur. * The notifier passed is linked into the kernel structures and must * not be reused until it has been unregistered. A negative errno code * is returned on a failure. */
int register_netdevice_notifier(struct notifier_block *nb) { return notifier_chain_register(&netdev_chain, nb); }
/** * unregister_netdevice_notifier - unregister a network notifier block * @nb: notifier * * Unregister a notifier previously registered by * register_netdevice_notifier(). The notifier is unlinked into the * kernel structures and may then be reused. A negative errno code * is returned on a failure. */
int unregister_netdevice_notifier(struct notifier_block *nb) { return notifier_chain_unregister(&netdev_chain,nb); }
以X25为例来说明使用者(--前面所说的订阅者)。 在af_x25.c中,定义了: struct notifier_block x25_dev_notifier = { notifier_call: x25_device_event, }; 然后模块初始化时向netdev_chain注册: static int __init x25_init(void) { ... ... register_netdevice_notifier(&x25_dev_notifier); ... ... } 比如当NETDEV_UP事件发生时(--前面所说的事件发布者网卡驱动--》调用dev.c),调用到: notifier_call_chain(&netdev_chain, NETDEV_UP, dev); 就会执行到x25_dev_notifier中注册的处理例程:x25_device_event,至于对相应的事件(event number)是不是感兴趣, 需要处理例程自己来判断。 static int x25_device_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = (struct net_device *)ptr; struct x25_neigh *neigh;
if (dev->type == ARPHRD_X25 #if defined(CONFIG_LLC) || defined(CONFIG_LLC_MODULE) || dev->type == ARPHRD_ETHER #endif ) { switch (event) { case NETDEV_UP: x25_link_device_up(dev); break; case NETDEV_GOING_DOWN: if ((neigh = x25_get_neigh(dev))) x25_terminate_link(neigh); break; case NETDEV_DOWN: x25_kill_by_device(dev); x25_route_device_down(dev); x25_link_device_down(dev); break; } }
return NOTIFY_DONE; }
所有关于网络设备的事件全部在net/core/dev.c中发生,从而引发notifier_call_chain(&netdev_chain,val, dev)的调用: Dev.c (linux\net\core): notifier_call_chain(&netdev_chain, NETDEV_CHANGE, dev); Dev.c (linux\net\core): notifier_call_chain(&netdev_chain, NETDEV_UP, dev); Dev.c (linux\net\core): notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev); Dev.c (linux\net\core): notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev); Dev.c (linux\net\core): notifier_call_chain(&netdev_chain, NETDEV_CHANGE, dev); Dev.c (linux\net\core): notifier_call_chain(&netdev_chain, NETDEV_CHANGEMTU, dev); Dev.c (linux\net\core): notifier_call_chain(&netdev_chain, NETDEV_CHANGEADDR, dev); Dev.c (linux\net\core): notifier_call_chain(&netdev_chain, NETDEV_CHANGEADDR, dev); Dev.c (linux\net\core): notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev); Dev.c (linux\net\core): notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev); Dev.c (linux\net\core): notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev); Dev.c (linux\net\core): notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev);
3. 总结 从上面的分析可以看出,Linux下的Notification机制不是通过消息的方式实现的,而是一旦外部事件发生,所以对这个事件感兴趣的模块都会立即响应这个事件。但是,这个通知机制的效率不是很高,因为它的粒度不够细,比如A对E1、E2事件感兴趣,B对E2、E3感兴趣,但是E1~E3都是由N链来管理的,这样当发生E1事件时,A、B的处理例程都会被调用一次。如果能够区分对待不同模块感兴趣的事件集,然后只把事件发送到感兴趣的模块,效率会更高一些。另外,对优先级的处理是必须得,但是如何利用这个优先级似乎没有很好的说明和例证。 |