线程的最大特点是资源的共享性,但资源共享中的同步问题是多线程编程的难点。linux下提供了多种方式来处理线程同步,最常用的是互斥锁、条件变量和信号量。
一、互斥锁(mutex)
通过锁机制实现线程间的同步。
-
初始化锁。在Linux下,线程的互斥量数据类型是pthread_mutex_t。在使用前,要对它进行初始化。
静态分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
动态分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);
-
加锁。对共享资源的访问,要对互斥量进行加锁,如果互斥量已经上了锁,调用线程会阻塞,直到互斥量被解锁。
int pthread_mutex_lock(pthread_mutex *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
-
解锁。在完成了对共享资源的访问后,要对互斥量进行解锁。
int pthread_mutex_unlock(pthread_mutex_t *mutex);
-
销毁锁。锁在是使用完成后,需要进行销毁以释放资源。
int pthread_mutex_destroy(pthread_mutex *mutex);
-
#include
-
#include
-
#include
-
#include
-
#include "iostream"
-
using namespace std;
-
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
-
int tmp;
-
void* thread(void *arg)
-
{
-
cout << "thread id is " << pthread_self() << endl;
-
pthread_mutex_lock(&mutex);
-
tmp = 12;
-
cout << "Now a is " << tmp << endl;
-
pthread_mutex_unlock(&mutex);
-
return NULL;
-
}
-
int main()
-
{
-
pthread_t id;
-
cout << "main thread id is " << pthread_self() << endl;
-
tmp = 3;
-
cout << "In main func tmp = " << tmp << endl;
-
if (!pthread_create(&id, NULL, thread, NULL))
-
{
-
cout << "Create thread success!" << endl;
-
}
-
else
-
{
-
cout << "Create thread failed!" << endl;
-
}
-
pthread_join(id, NULL);
-
pthread_mutex_destroy(&mutex);
-
return 0;
-
}
-
二、条件变量(cond)
互斥锁不同,条件变量是用来等待而不是用来上锁的。条件变量用来自动阻塞一个线程,直到某特殊情况发生为止。通常条件变量和互斥锁同时使用。条件变量分为两部分: 条件和变量。条件本身是由互斥量保护的。线程在改变条件状态前先要锁住互斥量。条件变量使我们可以睡眠等待某种条件出现。条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待"条件变量的条件成立"而挂起;另一个线程使"条件成立"(给出条件成立信号)。条件的检测是在互斥锁的保护下进行的。如果一个条件为假,一个线程自动阻塞,并释放等待状态改变的互斥锁。如果另一个线程改变了条件,它发信号给关联的条件变量,唤醒一个或多个等待它的线程,重新获得互斥锁,重新评价条件。如果两进程共享可读写的内存,条件变量可以被用来实现这两进程间的线程同步。
-
初始化条件变量。
静态态初始化,pthread_cond_t cond = PTHREAD_COND_INITIALIER;
动态初始化,int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
-
等待条件成立。释放锁,同时阻塞等待条件变量为真才行。timewait()设置等待时间,仍未signal,返回ETIMEOUT(加锁保证只有一个线程wait)
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
-
激活条件变量。pthread_cond_signal,pthread_cond_broadcast(激活所有等待线程)
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有线程的阻塞
-
清除条件变量。无线程等待,否则返回EBUSY
int pthread_cond_destroy(pthread_cond_t *cond);
-
#include
-
#include
-
#include "stdlib.h"
-
#include "unistd.h"
-
pthread_mutex_t mutex;
-
pthread_cond_t cond;
-
void hander(void *arg)
-
{
-
free(arg);
-
(void)pthread_mutex_unlock(&mutex);
-
}
-
void *thread1(void *arg)
-
{
-
pthread_cleanup_push(hander, &mutex);
-
while(1)
-
{
-
printf("thread1 is running\n");
-
pthread_mutex_lock(&mutex);
-
pthread_cond_wait(&cond, &mutex);
-
printf("thread1 applied the condition\n");
-
pthread_mutex_unlock(&mutex);
-
sleep(4);
-
}
-
pthread_cleanup_pop(0);
-
}
-
void *thread2(void *arg)
-
{
-
while(1)
-
{
-
printf("thread2 is running\n");
-
pthread_mutex_lock(&mutex);
-
pthread_cond_wait(&cond, &mutex);
-
printf("thread2 applied the condition\n");
-
pthread_mutex_unlock(&mutex);
-
sleep(1);
-
}
-
}
-
int main()
-
{
-
pthread_t thid1,thid2;
-
printf("condition variable study!\n");
-
pthread_mutex_init(&mutex, NULL);
-
pthread_cond_init(&cond, NULL);
-
pthread_create(&thid1, NULL, thread1, NULL);
-
pthread_create(&thid2, NULL, thread2, NULL);
-
sleep(1);
-
do
-
{
-
pthread_cond_signal(&cond);
-
}while(1);
-
sleep(20);
-
pthread_exit(0);
-
return 0;
-
}
-
#include
-
#include
-
#include "stdio.h"
-
#include "stdlib.h"
-
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
-
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
-
struct node
-
{
-
int n_number;
-
struct node *n_next;
-
}*head = NULL;
-
-
static void cleanup_handler(void *arg)
-
{
-
printf("Cleanup handler of second thread./n");
-
free(arg);
-
(void)pthread_mutex_unlock(&mtx);
-
}
-
static void *thread_func(void *arg)
-
{
-
struct node *p = NULL;
-
pthread_cleanup_push(cleanup_handler, p);
-
while (1)
-
{
-
-
pthread_mutex_lock(&mtx);
-
while (head == NULL)
-
{
-
-
-
-
-
-
-
-
-
pthread_cond_wait(&cond, &mtx);
-
p = head;
-
head = head->n_next;
-
printf("Got %d from front of queue/n", p->n_number);
-
free(p);
-
}
-
pthread_mutex_unlock(&mtx);
-
}
-
pthread_cleanup_pop(0);
-
return 0;
-
}
-
int main(void)
-
{
-
pthread_t tid;
-
int i;
-
struct node *p;
-
-
-
pthread_create(&tid, NULL, thread_func, NULL);
-
sleep(1);
-
for (i = 0; i < 10; i++)
-
{
-
p = (struct node*)malloc(sizeof(struct node));
-
p->n_number = i;
-
pthread_mutex_lock(&mtx);
-
p->n_next = head;
-
head = p;
-
pthread_cond_signal(&cond);
-
pthread_mutex_unlock(&mtx);
-
sleep(1);
-
}
-
printf("thread 1 wanna end the line.So cancel thread 2./n");
-
-
-
pthread_cancel(tid);
-
pthread_join(tid, NULL);
-
printf("All done -- exiting/n");
-
return 0;
-
}
三、信号量(sem)
如同进程一样,线程也可以通过信号量来实现通信,虽然是轻量级的。信号量函数的名字都以"sem_"打头。线程使用的基本信号量函数有四个。
-
信号量初始化。
int sem_init (sem_t *sem , int pshared, unsigned int value);
这是对由sem指定的信号量进行初始化,设置好它的共享选项(linux 只支持为0,即表示它是当前进程的局部信号量),然后给它一个初始值VALUE。
-
等待信号量。给信号量减1,然后等待直到信号量的值大于0。
int sem_wait(sem_t *sem);
-
释放信号量。信号量值加1。并通知其他等待线程。
int sem_post(sem_t *sem);
-
销毁信号量。我们用完信号量后都它进行清理。归还占有的一切资源。
int sem_destroy(sem_t *sem);
-
#include
-
#include
-
#include
-
#include
-
#include
-
#include
-
#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}
-
typedef struct _PrivInfo
-
{
-
sem_t s1;
-
sem_t s2;
-
time_t end_time;
-
}PrivInfo;
-
-
static void info_init (PrivInfo* thiz);
-
static void info_destroy (PrivInfo* thiz);
-
static void* pthread_func_1 (PrivInfo* thiz);
-
static void* pthread_func_2 (PrivInfo* thiz);
-
-
int main (int argc, char** argv)
-
{
-
pthread_t pt_1 = 0;
-
pthread_t pt_2 = 0;
-
int ret = 0;
-
PrivInfo* thiz = NULL;
-
thiz = (PrivInfo* )malloc (sizeof (PrivInfo));
-
if (thiz == NULL)
-
{
-
printf ("[%s]: Failed to malloc priv./n");
-
return -1;
-
}
-
info_init (thiz);
-
ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);
-
if (ret != 0)
-
{
-
perror ("pthread_1_create:");
-
}
-
ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);
-
if (ret != 0)
-
{
-
perror ("pthread_2_create:");
-
}
-
pthread_join (pt_1, NULL);
-
pthread_join (pt_2, NULL);
-
info_destroy (thiz);
-
return 0;
-
}
-
static void info_init (PrivInfo* thiz)
-
{
-
return_if_fail (thiz != NULL);
-
thiz->end_time = time(NULL) + 10;
-
sem_init (&thiz->s1, 0, 1);
-
sem_init (&thiz->s2, 0, 0);
-
return;
-
}
-
static void info_destroy (PrivInfo* thiz)
-
{
-
return_if_fail (thiz != NULL);
-
sem_destroy (&thiz->s1);
-
sem_destroy (&thiz->s2);
-
free (thiz);
-
thiz = NULL;
-
return;
-
}
-
static void* pthread_func_1 (PrivInfo* thiz)
-
{
-
return_if_fail(thiz != NULL);
-
while (time(NULL) < thiz->end_time)
-
{
-
sem_wait (&thiz->s2);
-
printf ("pthread1: pthread1 get the lock./n");
-
sem_post (&thiz->s1);
-
printf ("pthread1: pthread1 unlock/n");
-
sleep (1);
-
}
-
return;
-
}
-
static void* pthread_func_2 (PrivInfo* thiz)
-
{
-
return_if_fail (thiz != NULL);
-
while (time (NULL) < thiz->end_time)
-
{
-
sem_wait (&thiz->s1);
-
printf ("pthread2: pthread2 get the unlock./n");
-
sem_post (&thiz->s2);
-
printf ("pthread2: pthread2 unlock./n");
-
sleep (1);
-
}
-
return;
-
}
四、异步信号
由于LinuxThreads是在核外使用核内轻量级进程实现的线程,所以基于内核的异步信号操作对于线程也是有效的。但同时,由于异步信号总是实际发往某个进程,所以无法实现POSIX标准所要求的"信号到达某个进程,然后再由该进程将信号分发到所有没有阻塞该信号的线程中"原语,而是只能影响到其中一个线程。
POSIX异步信号同时也是一个标准C库提供的功能,主要包括信号集管理(sigemptyset()、sigfillset()、sigaddset()、sigdelset()、sigismember()等)、信号处理函数安装(sigaction())、信号阻塞控制(sigprocmask())、被阻塞信号查询(sigpending())、信号等待(sigsuspend())等,它们与发送信号的kill()等函数配合就能实现进程间异步信号功能。LinuxThreads围绕线程封装了sigaction()何raise(),本节集中讨论LinuxThreads中扩展的异步信号函数,包括pthread_sigmask()、pthread_kill()和sigwait()三个函数。毫无疑问,所有POSIX异步信号函数对于线程都是可用的。
int pthread_sigmask(int how, const sigset_t *newmask, sigset_t *oldmask)
设置线程的信号屏蔽码,语义与sigprocmask()相同,但对不允许屏蔽的Cancel信号和不允许响应的Restart信号进行了保护。被屏蔽的信号保存在信号队列中,可由sigpending()函数取出。
int pthread_kill(pthread_t thread, int signo)
向thread号线程发送signo信号。实现中在通过thread线程号定位到对应进程号以后使用kill()系统调用完成发送。
int sigwait(const sigset_t *set, int *sig)
挂起线程,等待set中指定的信号之一到达,并将到达的信号存入*sig中。POSIX标准建议在调用sigwait()等待信号以前,进程中所有线程都应屏蔽该信号,以保证仅有sigwait()的调用者获得该信号,因此,对于需要等待同步的异步信号,总是应该在创建任何线程以前调用pthread_sigmask()屏蔽该信号的处理。而且,调用sigwait()期间,原来附接在该信号上的信号处理函数不会被调用。
如果在等待期间接收到Cancel信号,则立即退出等待,也就是说sigwait()被实现为取消点。
五、其他同步方式
除了上述讨论的同步方式以外,其他很多进程间通信手段对于LinuxThreads也是可用的,比如基于文件系统的IPC(管道、Unix域Socket等)、消息队列(Sys.V或者Posix的)、System V的信号灯等。只有一点需要注意,LinuxThreads在核内是作为共享存储区、共享文件系统属性、共享信号处理、共享文件描述符的独立进程看待的。
六、条件变量与互斥锁、信号量的区别
1).互斥锁必须总是由给它上锁的线程解锁,信号量的挂出即不必由执行过它的等待操作的同一进程执行。一个线程可以等待某个给定信号灯,而另一个线程可以挂出该信号灯。
2).互斥锁要么锁住,要么被解开(二值状态,类型二值信号量)
3).由于信号量有一个与之关联的状态(它的计数值),信号量挂出操作总是被记住。然而当向一个条件变量发送信号时,如果没有线程等待在该条件变量上,那么该信号将丢失。
4).互斥锁是为了上锁而设计的,条件变量是为了等待而设计的,信号灯即可用于上锁,也可用于等待,因而可能导致更多的开销和更高的复杂性。
2013-08-05 23:19 938人阅读 评论(0) 收藏 举报
分类:
Linux(14)
进程间通讯(IPC)方法主要有以下几种:
管道/FIFO/共享内存/消息队列/信号
1.管道中还有命名管道和非命名管道(即匿名管道)之分,非命名管道(即匿名管道)只能用于父子进程通讯,命名管道可用于非父子进程,命名管道就是FIFO,管道是先进先出的通讯方式
2.消息队列是用于两个进程之间的通讯,首先在一个进程中创建一个消息队列,然后再往消息队列中写数据,而另一个进程则从那个消息队列中取数据。需要注意的是,消息队列是用创建文件的方式建立的,如果一个进程向某个消息队列中写入了数据之后,另一个进程并没有取出数据,即使向消息队列中写数据的进程已经结束,保存在消息队列中的数据并没有消失,也就是说下次再从这个消息队列读数据的时候,就是上次的数据!!!!
3.信号量,它与WINDOWS下的信号量是一样的,所以就不用多说了
4.共享内存,类似于WINDOWS下的DLL中的共享变量,但LINUX下的共享内存区不需要像DLL这样的东西,只要首先创建一个共享内存区,其它进程按照一定的步骤就能访问到这个共享内存区中的数据,当然可读可写
以上几种方式的比较:
1.管道:速度慢,容量有限,只有父子进程能通讯
2.FIFO:任何进程间都能通讯,但速度慢
3.消息队列:容量受到系统限制,且要注意第一次读的时候,要考虑上一次没有读完数据的问题
4.信号量:不能传递复杂消息,只能用来同步
5.共享内存区:能够很容易控制容量,速度快,但要保持同步,比如一个进程在写的时候,另一个进程要注意读写的问题,相当于线程中的线程安全,当然,共享内存区同样可以用作线程间通讯,不过没这个必要,线程间本来就已经共享了同一进程内的一块内存
Linux系统上运行有多个进程,其中许多都是独立运行。然而,有些进程必须相互合作以达成预期目的,因此彼此间需要通信和同步机制。
读写磁盘文件中的信息是进程间通信的方法之一。可是,对许多程序来说,这种方法既慢又缺乏灵活性。因此,像所有现代UNIX实现那样,Linux也提供了丰富的进程间通信(IPC)机制,如下所示:
信号(signal):用来表示事件的发生。
管道和FIFO:用于在进程间传递数据。
套接字:供同一台主机或是联网的不同主机上所运行的进程之间传递数据。
文件锁定:为防止其他进程读取或更新文件内容,允许某进程对文件的部分区域加以锁定。
消息队列:用于在进程间交换信息(数据包)
信号量(semaphore):用来同步进程动作。
共享内存:允许两个及两个以上进程共享一块内存。当某进程改变了共享内存的内容时,其他所有进程会立即了解到这一变化。
UNIX系统的IPC机制种类如此繁多,有些功能还互有重叠,部分原因是由于各种IPC机制是在不同的UNIX实现上演变而来的,需要遵循的标准也各不相同。例如,就本质而言,FIFO和UNIX套接字功能相同,允许同一系统上并无关联的进程彼此交换数据。二者之所以并存于现代UNIX系统之中,是由于FIFO来自System V,而套接字则源于BSD。