Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1685759
  • 博文数量: 511
  • 博客积分: 967
  • 博客等级: 准尉
  • 技术积分: 2560
  • 用 户 组: 普通用户
  • 注册时间: 2012-07-06 14:19
文章分类

全部博文(511)

文章存档

2016年(11)

2015年(61)

2014年(257)

2013年(63)

2012年(119)

分类: LINUX

2013-05-17 17:16:24

一:前言

Tty这个名称源于电传打字节的简称。在linux表示各种终端。终端通常都跟硬件相对应。比如对应于输入设备键盘鼠标。输出设备显示器的控制 终端和串口终端.也有对应于不存在设备的pty驱动。在如此众多的终端模型之中,linux是怎么将它们统一建模的呢?这就是我们今天要讨论的问题

二:tty驱动概貌

Tty架构如下所示:

如上图所示,用户空间主要是通过设备文件同tty_core交互.tty_core根据用空间操作的类型再选择跟line discipline和tty_driver交互.例如设置硬件的ioctl指令就直接交给tty_driver处理。Read和write操作就会交给 line discipline处理.

Line discipline是线路规程的意思。正如它的名字一样,它表示的是这条终端”线程”的输入与输出规范设置.主要用来进行输入/输出数据的预处理。处理之后。就会将数据交给tty_driver

Tty_driver就是终端对应的驱动了。它将字符转换成终端可以理解的字串.将其传给终端设备。

值得注意的是,这个架构没有为tty_drivero提供read操作。也就是说tty_core 和line discipline都没有办法从tty_driver里直接读终端信息。这是因为tty_driver对就的hardware并不一定是输入数据和输出 数据的共同负载者。例如控制终端,输出设备是显示器。输入设备是键盘。基于这样的原理。在line discipline中有一个输入缓存区。并提供了一个名叫receive_buf()的接口函数。对应的终端设备只要调用line discipine的receiver_buf函数,将数据写入到输入缓存区就可以了。

如果一个设备同时是输入设备又是输出设备。那在设备的中断处理中调用receive_buf()将数据写入即可.

三:tty驱动接口分析

具体的tty驱动设计可以参考LDD3。这里只对它的接口实现做一个分析.tty driver的所有操作都包含在tty_driver中。内核即供了一个名叫alloc_tty_driver()来分配这个tty_driver。当然 我们也可以在自己的驱动中将它定义成一个静态的结构。对tty_driver进行一些必要的初始化之后,调用tty_register_driver() 将其注册.

alloc_tty_driver()接口代码如下所示:

01.struct tty_driver *alloc_tty_driver(int lines) 02.{ 03. struct tty_driver *driver; 04. driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 05. if (driver) { 06. driver->magic = TTY_DRIVER_MAGIC; 07. driver->num = lines; 08. /* later we'll move allocation of tables here */ 09. } 10. return driver; 11.}

这个函数只有一个参数。这个参数的含义为line的个数。也即次设备号的个数。注意每个设备文件都会对应一个line.

在这个接口里为tty_driver分配内存,然后将driver->mage.driver->num初始化之后就返回了.

tty_register_driver()用来注册一个tty_driver。代码如下:

01.int tty_register_driver(struct tty_driver *driver) 02.{ 03. int error; 04. int i; 05. dev_t dev; 06. void **p = NULL; 07. //TTY_DRIVER_INSTALLED:已安装的 08. if (driver->flags & TTY_DRIVER_INSTALLED) 09. return 0; 10. //TTY_DRIVER_DEVPTS_MEM:使用devpts进行动态内存映射 11. if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) { 12. p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL); 13. if (!p) 14. return -ENOMEM; 15. } 16. //注册字符设备号 17. //如果没有指定driver->major 18. if (!driver->major) { 19. error = alloc_chrdev_region(&dev, driver->minor_start, 20. driver->num, driver->name); 21. if (!error) { 22. driver->major = MAJOR(dev); 23. driver->minor_start = MINOR(dev); 24. } 25. } else { 26. dev = MKDEV(driver->major, driver->minor_start); 27. error = register_chrdev_region(dev, driver->num, driver->name); 28. } 29. if (error 30. kfree(p); 31. return error; 32. } 33. if (p) { 34. driver->ttys = (struct tty_struct **)p; 35. driver->termios = (struct ktermios **)(p + driver->num); 36. driver->termios_locked = (struct ktermios **) 37. (p + driver->num * 2); 38. } else { 39. driver->ttys = NULL; 40. driver->termios = NULL; 41. driver->termios_locked = NULL; 42. } 43. //注册字符设备 44. cdev_init(&driver->cdev, &tty_fops); 45. driver->cdev.owner = driver->owner; 46. error = cdev_add(&driver->cdev, dev, driver->num); 47. if (error) { 48. unregister_chrdev_region(dev, driver->num); 49. driver->ttys = NULL; 50. driver->termios = driver->termios_locked = NULL; 51. kfree(p); 52. return error; 53. } 54. //指定默认的put_char 55. if (!driver->put_char) 56. driver->put_char = tty_default_put_char; 57. mutex_lock(&tty_mutex); 58. list_add(&driver->tty_drivers, &tty_drivers); 59. mutex_unlock(&tty_mutex); 60. //如果没有指定TTY_DRIVER_DYNAMIC_DEV.即动态设备管理 61. if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 62. for (i = 0; i num; i++) 63. tty_register_device(driver, i, NULL); 64. } 65. proc_tty_register_driver(driver); 66. return 0; 67.}

这个函数操作比较简单。就是为tty_driver创建字符设备。然后将字符设备的操作集指定为tty_fops.并且将tty_driver 挂载到tty_drivers链表中.其实这个链表的作用跟我们之前分析的input子系统中的input_dev[ ]数组类似。都是以设备号为关键字找到对应的driver.

特别的。如果没有定义TTY_DRIVER_DYNAMIC_DEV.还会在sysfs中创建一个类设备.这样主要是为了udev管理设备.
以流程图的方式将上述操作表示如下:

四:设备文件的操作

设备文件的操作是本节分析的重点。它的主要操作是将各项操作对应到ldsic或者是tty_driver.

4.1:打开tty设备的操作

从注册的过程可以看到,所有的操作都会对应到tty_fops中。Open操作对应的操作接口是tty_open()。代码如下:

01.static int tty_open(struct inode *inode, struct file *filp) 02.{ 03. struct tty_struct *tty; 04. int noctty, retval; 05. struct tty_driver *driver; 06. int index; 07. dev_t device = inode->i_rdev; 08. unsigned short saved_flags = filp->f_flags; 09. nonseekable_open(inode, filp); 10.retry_open: 11. //O_NOCTTY 如果路径名指向终端设备,不要把这个设备用作控制终端 12. //noctty:需不需要更改当前进程的控制终端 13. noctty = filp->f_flags & O_NOCTTY; 14. index = -1; 15. retval = 0; 16. mutex_lock(&tty_mutex); 17. //设备号(5,0) 即/dev/tty.表示当前进程的控制终端 18. if (device == MKDEV(TTYAUX_MAJOR, 0)) { 19. tty = get_current_tty(); 20. //如果当前进程的控制终端不存在,退出 21. if (!tty) { 22. mutex_unlock(&tty_mutex); 23. return -ENXIO; 24. } 25. //取得当前进程的tty_driver 26. driver = tty->driver; 27. index = tty->index; 28. filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 29. /* noctty = 1; */ 30. goto got_driver; 31. } 32.#ifdef CONFIG_VT 33. //设备号(4,0).即/dev/tty0:表示当前的控制台 34. if (device == MKDEV(TTY_MAJOR, 0)) { 35. extern struct tty_driver *console_driver; 36. driver = console_driver; 37. //fg_console: 表示当前的控制台 38. index = fg_console; 39. noctty = 1; 40. goto got_driver; 41. } 42.#endif 43. //设备号(5,1).即/dev/console.表示外接的控制台. 通过regesit_console() 44. if (device == MKDEV(TTYAUX_MAJOR, 1)) { 45. driver = console_device(&index); 46. if (driver) { 47. /* Don't let /dev/console block */ 48. filp->f_flags |= O_NONBLOCK; 49. noctty = 1; 50. goto got_driver; 51. } 52. mutex_unlock(&tty_mutex); 53. return -ENODEV; 54. } 55. //以文件的设备号为关键字,到tty_drivers中搜索所注册的driver 56. driver = get_tty_driver(device, &index); 57. if (!driver) { 58. mutex_unlock(&tty_mutex); 59. return -ENODEV; 60. } 61.got_driver: 62. //index表示它的次设备号 63. retval = init_dev(driver, index, &tty); 64. mutex_unlock(&tty_mutex); 65. if (retval) 66. return retval; 67. filp->private_data = tty; 68. file_move(filp, &tty->tty_files); 69. check_tty_count(tty, "tty_open"); 70. if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 71. tty->driver->subtype == PTY_TYPE_MASTER) 72. noctty = 1; 73.#ifdef TTY_DEBUG_HANGUP 74. printk(KERN_DEBUG "opening %s...", tty->name); 75.#endif 76. if (!retval) { 77. if (tty->driver->open) 78. retval = tty->driver->open(tty, filp); 79. else 80. retval = -ENODEV; 81. } 82. filp->f_flags = saved_flags; 83. if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && 84. !capable(CAP_SYS_ADMIN)) 85. retval = -EBUSY; 86. if (retval) { 87.#ifdef TTY_DEBUG_HANGUP 88. printk(KERN_DEBUG "error %d in opening %s...", retval, 89. tty->name); 90.#endif 91. release_dev(filp); 92. if (retval != -ERESTARTSYS) 93. return retval; 94. if (signal_pending(current)) 95. return retval; 96. schedule(); 97. /* 98. * Need to reset f_op in case a hangup happened. 99. */ 100. if (filp->f_op == &hung_up_tty_fops) 101. filp->f_op = &tty_fops; 102. goto retry_open; 103. } 104. mutex_lock(&tty_mutex); 105. spin_lock_irq(¤t->sighand->siglock); 106. //设置当前进程的终端 107. if (!noctty && 108. current->signal->leader && 109. !current->signal->tty && 110. tty->session == NULL) 111. __proc_set_tty(current, tty); 112. spin_unlock_irq(¤t->sighand->siglock); 113. mutex_unlock(&tty_mutex); 114. tty_audit_opening(); 115. return 0; 116.}

注意在这里有个容易忽略的操作:init_dev()。

Init_dev() -à initialize_tty_struct() à tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));

看一下tty_ldisc_assign(tty, tty_ldisc_get(N_TTY))的操作:

01.Tty_ldisc_get(): 02.struct tty_ldisc *tty_ldisc_get(int disc) 03.{ 04. unsigned long flags; 05. struct tty_ldisc *ld; 06. if (disc = NR_LDISCS) 07. return NULL; 08. spin_lock_irqsave(&tty_ldisc_lock, flags); 09. ld = &tty_ldiscs[disc]; 10. /* Check the entry is defined */ 11. if (ld->flags & LDISC_FLAG_DEFINED) { 12. /* If the module is being unloaded we can't use it */ 13. if (!try_module_get(ld->owner)) 14. ld = NULL; 15. else /* lock it */ 16. ld->refcount++; 17. } else 18. ld = NULL; 19. spin_unlock_irqrestore(&tty_ldisc_lock, flags); 20. return ld; 21.}

这个函数的操作为到tty_ldiscs[ ]找到对应项.这个数组中的成员是调用tty_register_ldisc()将其设置进去的.
tty_ldisc_assign操作如下:

01.static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld) 02.{ 03. tty->ldisc = *ld; 04. tty->ldisc.refcount = 0; 05.}

即将取出来的idisc作为tty->ldisc字段.

在这段代码中涉及到了tty_driver,tty_struct, struct tty_ldisc.这三者之间的关系用下图表示如下:

在这里,为tty_struct的ldisc是默认指定为tty_ldiscs[N_TTY].该ldisc对应的是控制终端的线路规范。可以在用空间用带TIOCSETD的ioctl调用进行更改.

将上述open用流程图的方式表示如下:

4.2:设备文件的write操作

设备文件的write操作对应tty_fops->write即tty_write().代码如下:

01.static ssize_t tty_write(struct file *file, const char __user *buf, 02. size_t count, loff_t *ppos) 03.{ 04. struct tty_struct *tty; 05. struct inode *inode = file->f_path.dentry->d_inode; 06. ssize_t ret; 07. struct tty_ldisc *ld; 08. tty = (struct tty_struct *)file->private_data; 09. if (tty_paranoia_check(tty, inode, "tty_write")) 10. return -EIO; 11. if (!tty || !tty->driver->write || 12. (test_bit(TTY_IO_ERROR, &tty->flags))) 13. return -EIO; 14. ld = tty_ldisc_ref_wait(tty); 15. if (!ld->write) 16. ret = -EIO; 17. else 18. ret = do_tty_write(ld->write, tty, file, buf, count); 19. tty_ldisc_deref(ld); 20. return ret; 21.}

在open的过程中,将tty_struct存放在file的私有区。在write中,从file的私有区中就可以取到要操作的tty_struct.

如果tty_driver中没有write.如果tty有错误都会有效性判断失败返回。如果一切正常,递增ldsic的引用计数。将用do_tty_wirte()再行写操作。写完之后,再递减ldsic的引用计数.

Do_tty_write代码分段分析如下:

01.static inline ssize_t do_tty_write( 02. ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 03. struct tty_struct *tty, 04. struct file *file, 05. const char __user *buf, 06. size_t count) 07.{ 08. ssize_t ret, written = 0; 09. unsigned int chunk; 10. ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 11. if (ret 12. return ret; 13. /* 14. * We chunk up writes into a temporary buffer. This 15. * simplifies low-level drivers immensely, since they 16. * don't have locking issues and user mode accesses. 17. * 18. * But if TTY_NO_WRITE_SPLIT is set, we should use a 19. * big chunk-size.. 20. * 21. * The default chunk-size is 2kB, because the NTTY 22. * layer has problems with bigger chunks. It will 23. * claim to be able to handle more characters than 24. * it actually does. 25. * 26. * FIXME: This can probably go away now except that 64K chunks 27. * are too likely to fail unless switched to vmalloc... 28. */ 29. chunk = 2048; 30. if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 31. chunk = 65536; 32. if (count 33. chunk = count; 34. /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 35. if (tty->write_cnt 36. unsigned char *buf; 37. if (chunk 38. chunk = 1024; 39. buf = kmalloc(chunk, GFP_KERNEL); 40. if (!buf) { 41. ret = -ENOMEM; 42. goto out; 43. } 44. kfree(tty->write_buf); 45. tty->write_cnt = chunk; 46. tty->write_buf = buf; 47. }

默认一次写数据的大小为2K.如果设置了TTY_NO_WRITE_SPLIT.则将一次写的数据量扩大为65536.

Tty->write_buf是写操作的临时缓存区。即将用户空的数据暂时存放到这里

Tty->write_cnt是临时缓存区的大小。

在这里,必须要根据一次写的数据量对这个临时缓存区做调整

01. /* Do the write .. */ 02. for (;;) { 03. size_t size = count; 04. if (size > chunk) 05. size = chunk; 06. ret = -EFAULT; 07. if (copy_from_user(tty->write_buf, buf, size)) 08. break; 09. lock_kernel(); 10. ret = write(tty, file, tty->write_buf, size); 11. unlock_kernel(); 12. if (ret 13. break; 14. written += ret; 15. buf += ret; 16. count -= ret; 17. if (!count) 18. break; 19. ret = -ERESTARTSYS; 20. if (signal_pending(current)) 21. break; 22. cond_resched(); 23. } 24. if (written) { 25. struct inode *inode = file->f_path.dentry->d_inode; 26. inode->i_mtime = current_fs_time(inode->i_sb); 27. ret = written; 28. } 29.out: 30. tty_write_unlock(tty); 31. return ret; 32.}

后面的操作就比较简单了。先将用户空间的数据copy到临时缓存区,然后再调用ldisc->write()完成这次写操作.最后再更新设备结点的时间戳.

Write操作的流程图如下示:

在这里,我们只看到将数据写放到了ldisc->write().没有看到与tty_driver相关的部份。实际上在ldisc中对写入的数据做预处理过后,还是会调用tty_driver->write()将其写入硬件.

4.3:设备文件的read操作

01.static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 02. loff_t *ppos) 03.{ 04. int i; 05. struct tty_struct *tty; 06. struct inode *inode; 07. struct tty_ldisc *ld; 08. tty = (struct tty_struct *)file->private_data; 09. inode = file->f_path.dentry->d_inode; 10. if (tty_paranoia_check(tty, inode, "tty_read")) 11. return -EIO; 12. if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 13. return -EIO; 14. /* We want to wait for the line discipline to sort out in this 15. situation */ 16. ld = tty_ldisc_ref_wait(tty); 17. lock_kernel(); 18. if (ld->read) 19. i = (ld->read)(tty, file, buf, count); 20. else 21. i = -EIO; 22. tty_ldisc_deref(ld); 23. unlock_kernel(); 24. if (i > 0) 25. inode->i_atime = current_fs_time(inode->i_sb); 26. return i; 27.}

这个read操作就更简单。直接调用ldsic->read()完成工作

流程图如下:

五:小结

在tty设备文件的操作中。Open操作会进行一系统初始化。然后调用ldsic->open tty_driver->open。在write和read调用中只tty_core只会用到ldisc->wirte/ldisc- >read.除了上面分析的几个操作之外,还有一个ioctl操作,以及它封装的几个termios。这些ioctl类的操作会直接和 tty_driver相关联.

在这一节里,只对tty的构造做一个分析,具体ldisc的操作我们之后以控制终端为例进行分析.

阅读(962) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~