全部博文(252)
分类:
2012-05-05 22:00:56
原文地址:算法导论(十四)--数据结构的扩张 作者:yourtommy
有些时候,我们需要在一些标准的数据结构(比如双链表、散列表或二叉查找树)上增加一些信息,以便编入新的操作。下面给出一个红黑树进行扩充的例子。
动态顺序统计
在红黑树的每个结点,除了基本的color, left, right , parent域,还增加一个size域,来记录以该结点为根的子树的结点数。一个结点的size可以由它的两个子结点得到:
x.size = x.left.size + x.right.size + 1 (T.nil.size为0。)
基于这个新加的域,我们便可增加新的操作,比如选择第i小的元素:
接下来讨论如何维护该数据结构中的size域。
在插入元素时,分两阶段,阶段一:从根开始向下遍历,
直到元素找到可以插入的位置;阶段二:通过旋转来维护红黑性质。在阶段一,我们只需在遍历时经由的所有结点的size增加1便可,时间为
O(lg(n)),在阶段二最多会有O(lg(n))次旋转,每次旋转只需O(1)的时间:重新计算被旋转的元素的size,看下图:
在LEFT_ROTATE里加入下列两行代码以维护size信息:
同 样,在删除元素时,同样分为两个阶段,阶段一:从树中删除元素,阶段二,通过旋转维护红黑信息。对于阶段一,我们可以沿着被删除的元素一直向根遍历,经由 的每个结点的size域都减1;在阶段二至多有O(lg(n))次旋转。所以删除操作时维护size域的运行时间同样为O(lg(n))。
如何扩张数据结构
对一种数据结构的扩张过程可分为四个步骤:
1、选择基础数据结构; (选择红黑树)
2、确定要在基础数据结构中添加哪些信息; (加入size域)
3、验证可用基础数据结构上的基本修改操作来维护这些新添加的信息; (插入和删除可以维护size域)
4、设计新的操作。 (OS_SELECT和OS_RANK)
以上给出的是一般模式,不必生硬地遵循。
对于红黑树的扩张,我们可以给出以下概括:
设
域f对含n个结点的红黑树进行扩张的域,且假设某结点x的域f的内容可以仅用结点x,x.left和x.right中的信息计算,包括x.left.f和
x.right.f。这样,在插入和删除操作中,我们可以在不影响这两个操作O(lg(n))渐近性能的情况下,对T的所有结点的f值进行维护。
下面再介绍另一个红黑树的扩张:区间树。
区 间树中,每个结点的关键字不是简单的整数,而是一个区间[low, high],域名key同样也更名为interval。在进行关键字比较时,low更小的值作为更小的值放在树的左侧。同时,每个结点还维护一个max 域,它表示以该结点为根的子树里,所有元素里的区间[low, high]的high值中的最大值。
我们这样定义两个区间重叠(overlap):[low, high]和[low', high']只有在high < low'或high' < low时才不重叠。
基于这个数据结构,我们可以定义一个新操作:给定一个区间i,查找区间树中与i重叠的区间: