分类: LINUX
2013-05-17 12:00:35
在进程创建的时候,Linux系统会分配一个号码给当前这个进程,这个号码在进程所在的命名空间中是唯一的,但在其它的兄弟进程中,这个号码就不是唯一的了,也就是对于全局的命名空间来说,这个号不是全局唯一。这个号码就是进程的ID号,简称为PID。
一,进程号数据结构表示
这个PID被保存在进程的结构表示task_struct中。
struct task_struct{ .... pid_t pid; pid_t tgid; ..... };
typedef int __kernel_pid_t; typedef __kernel_pid_t pid_t;
struct pid_namespace { struct kref kref; struct pidmap pidmap[PIDMAP_ENTRIES]; int last_pid; struct task_struct *child_reaper; struct kmem_cache *pid_cachep; int level; struct pid_namespace *parent; #ifdef CONFIG_PROC_FS struct vfsmount *proc_mnt; #endif };
struct upid { /* Try to keep pid_chain in the same cacheline as nr for find_pid */ int nr; //表示ID的数值,这个就是命名空间内所可见的PID数值。 struct pid_namespace *ns; // 该ID的命名空间指针。 struct hlist_node pid_chain; // 将所有的upid实例都保存在一散列溢出链表上。 }; struct pid { atomic_t count; // 引用计数 /* lists of tasks that use this pid */ // struct hlist_head tasks[PIDTYPE_MAX]; // 每个数组项都是一个散列表头。 struct rcu_head rcu; // int level; struct upid numbers[1]; };
enum pid_type { PIDTYPE_PID,进程ID PIDTYPE_PGID,进程组ID PIDTYPE_SID,会话组ID PIDTYPE_MAX };
struct task_struct{ ...... struct pid_link pids[PIDTYPE_MAX]; ...... }; struct pid_link{ //定义于pid.h文件中。 struct hlist_node node; struct pid *pid; }
static struct hlist_head *pid_hash;
void __init pidhash_init(void) { int i, pidhash_size; unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); pidhash_shift = max(4, fls(megabytes * 4)); pidhash_shift = min(12, pidhash_shift); pidhash_size = 1 << pidhash_shift; printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", pidhash_size, pidhash_shift, pidhash_size * sizeof(struct hlist_head)); pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash))); if (!pid_hash) panic("Could not alloc pidhash!\n"); for (i = 0; i < pidhash_size; i++) INIT_HLIST_HEAD(&pid_hash[i]); }
int fastcall attach_pid(struct task_struct *task, enum pid_type type, struct pid *pid) { struct pid_link *link; link = &task->pids[type]; link->pid = pid; hlist_add_head_rcu(&link->node, &pid->tasks[type]); return 0; }
struct pid * fastcall find_pid_ns(int nr, struct pid_namespace *ns) { struct hlist_node *elem; struct upid *pnr; hlist_for_each_entry_rcu(pnr, elem, &pid_hash[pid_hashfn(nr, ns)], pid_chain) if (pnr->nr == nr && pnr->ns == ns) return container_of(pnr, struct pid, numbers[ns->level]); return NULL; } EXPORT_SYMBOL_GPL(find_pid_ns);
struct task_struct *find_task_by_pid_type_ns(int type, int nr, struct pid_namespace *ns) { return pid_task(find_pid_ns(nr, ns), type); }
struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type) { struct task_struct *result = NULL; if (pid) { struct hlist_node *first; first = rcu_dereference(pid->tasks[type].first); if (first) result = hlist_entry(first, struct task_struct, pids[(type)].node); } return result; }
struct pid* _pid = task->pids[type].pid;
static int alloc_pidmap(struct pid_namespace *pid_ns) { int i, offset, max_scan, pid, last = pid_ns->last_pid; struct pidmap *map; pid = last + 1; if (pid >= pid_max) pid = RESERVED_PIDS; offset = pid & BITS_PER_PAGE_MASK; map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset; for (i = 0; i <= max_scan; ++i) { if (unlikely(!map->page)) { void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); /* * Free the page if someone raced with us * installing it: */ spin_lock_irq(&pidmap_lock); if (map->page) kfree(page); else map->page = page; spin_unlock_irq(&pidmap_lock); if (unlikely(!map->page)) break; } if (likely(atomic_read(&map->nr_free))) { do { if (!test_and_set_bit(offset, map->page)) { atomic_dec(&map->nr_free); pid_ns->last_pid = pid; return pid; } offset = find_next_offset(map, offset); pid = mk_pid(pid_ns, map, offset); /* * find_next_offset() found a bit, the pid from it * is in-bounds, and if we fell back to the last * bitmap block and the final block was the same * as the starting point, pid is before last_pid. */ } while (offset < BITS_PER_PAGE && pid < pid_max && (i != max_scan || pid < last || !((last+1) & BITS_PER_PAGE_MASK))); } if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { ++map; offset = 0; } else { map = &pid_ns->pidmap[0]; offset = RESERVED_PIDS; if (unlikely(last == offset)) break; } pid = mk_pid(pid_ns, map, offset); } return -1; }
static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid) { struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE; int offset = pid & BITS_PER_PAGE_MASK; clear_bit(offset, map->page); atomic_inc(&map->nr_free); }
struct pid *alloc_pid(struct pid_namespace *ns) { struct pid *pid; enum pid_type type; int i, nr; struct pid_namespace *tmp; struct upid *upid; pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); if (!pid) goto out; tmp = ns; for (i = ns->level; i >= 0; i--) {//这里将对其可见的所有的命名空间都生成一个局部的ID nr = alloc_pidmap(tmp); if (nr < 0) goto out_free; pid->numbers[i].nr = nr; pid->numbers[i].ns = tmp; tmp = tmp->parent; } get_pid_ns(ns); pid->level = ns->level; atomic_set(&pid->count, 1); for (type = 0; type < PIDTYPE_MAX; ++type) INIT_HLIST_HEAD(&pid->tasks[type]); spin_lock_irq(&pidmap_lock); for (i = ns->level; i >= 0; i--) {//更新struct pid,对每个struct upid,都将其置于散列表上。 upid = &pid->numbers[i]; hlist_add_head_rcu(&upid->pid_chain, &pid_hash[pid_hashfn(upid->nr, upid->ns)]); } spin_unlock_irq(&pidmap_lock); out: return pid; out_free: for (i++; i <= ns->level; i++) free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr); kmem_cache_free(ns->pid_cachep, pid); pid = NULL; goto out; }
struct task_struct{ ....... struct task_struct *group_leader; /* threadgroup leader */ ....... };
from:http://blog.csdn.net/zmxiangde_88/article/details/8027431