摘要:多线程编程中,线程A循环计算,然后sleep一会接着计算(目的是减少CPU利用率);存在的问题是,如果要关闭程序,通常选择join线程A等待线程A退出,可是我们必须等到sleep函数返回,该线程A才能正常退出,这无疑减慢了程序退出的速度。当然,你可以terminate线程A,但这样做很不优雅,且会存在一些未知问题。采用(pthread_cond_t * cond, pthread_mutex_t *mutex, const struct timespec * abstime)可以优雅的解决该问题,设置等待条件变量cond,如果超时,则返回;如果等待到条件变量cond,也返回。本文暂不将内部机理,仅演示一个demo。
首先,看这段代码,thr_fn为一个线程函数:
bool flag = true;
void * thr_fn(void * arg)
{
while (flag)
{
printf(“.\n”);
sleep(10);
}
printf(“thread exit\n”);
}
int main()
{
pthread_t thread;
if (0 != pthread_create(&thread, NULL, thr_fn, NULL))
{
printf(“error when create pthread,%d\n”, errno);
return 1;
}
char c ;
while ((c = getchar()) != ‘q’);
printf(“Now terminate the thread!\n”);
flag = false;
printf(“Wait for thread to exit\n”);
pthread_join(thread, NULL);
printf(“Bye\n”);
return 0;
}
输入q后,需要等线程从sleep中醒来(由挂起状态变为运行状态),即最坏情况要等10s,线程才会被join。采用sleep的缺点:不能及时唤醒线程。
采用pthread_cond_timedwait函数实现的如下:
-
include
-
include
-
include
-
include
-
include
pthread_t thread;
pthread_cond_t cond;
pthread_mutex_t mutex;
bool flag = true;
void * thr_fn(void * arg)
{
struct timeval now;
struct timespec outtime;
pthread_mutex_lock(&mutex);
while (flag)
{
printf(“.\n”);
gettimeofday(&now, NULL);
outtime.tv_sec = now.tv_sec + 5;
outtime.tv_nsec = now.tv_usec * 1000;
pthread_cond_timedwait(&cond, &mutex, &outtime);
}
pthread_mutex_unlock(&mutex);
printf(“thread exit\n”);
}
int main()
{
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cond, NULL);
if (0 != pthread_create(&thread, NULL, thr_fn, NULL))
{
printf(“error when create pthread,%d\n”, errno);
return 1;
}
char c ;
while ((c = getchar()) != ‘q’);
printf(“Now terminate the thread!\n”);
flag = false;
pthread_mutex_lock(&mutex);
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);
printf(“Wait for thread to exit\n”);
pthread_join(thread, NULL);
printf(“Bye\n”);
return 0;
}
说明(翻译摘要中提供的连接,翻译的不好,凑合的看吧):
pthread_cond_timedwait()函数阻塞住调用该函数的线程,等待由cond指定的条件被触发(pthread_cond_broadcast() or pthread_cond_signal())。
当pthread_cond_timedwait()被调用时,调用线程必须已经锁住了mutex。函数pthread_cond_timedwait()会对mutex进行【解锁和执行对条件的等待】(原子操作)。这里的原子意味着:解锁和执行条件的等待是原则的,一体的。(In this case, atomically means with respect to the mutex and the condition variable and other access by threads to those objects through the pthread condition variable interfaces.)
如果等待条件满足或超时,或线程被取消,调用线程需要在线程继续执行前先自动锁住mutex,如果没有锁住mutex,产生EPERM错误。即,该函数返回时,mutex已经被调用线程锁住。
等待的时间通过abstime参数(绝对系统时间,过了该时刻就超时)指定,超时则返回ETIMEDOUT错误码。开始等待后,等待时间不受系统时钟改变的影响。
尽管时间通过秒和纳秒指定,系统时间是毫秒粒度的。需要根据调度和优先级原因,设置的时间长度应该比预想的时间要多或者少点。可以通过使用系统时钟接口gettimeofday()获得timeval结构体。
注: 为了可靠的使用条件变量和确保不忘记对条件变量的唤醒操作,应该采用一个bool变量和mutex变量同条件变量配合使用。如本文demo。
最近开始入手网络编程领域,简单的学习了PThread的几个库方法,然后就开始进项目组学习了。遇到的最大问题就是死锁问题,因为我用的方法是:
pthread_cond_wait()和 pthread_cond_signal() 来控制的,有的时候看着明明是对的或者说是单步调试的情况下是正确的,但是一运行就卡住不动了,实在是太郁闷了,这个时候我发现了一个有用的函数:
pthread_cond_timedwait
(pthread_cond_t * _cond,pthread_mutex_t * _mutex,_const struct timespec * _abstime);
这个函数的解释为:比函数pthread_cond_wait()多了一个时间参数,经历abstime段时间后,即使条件变量不满足,阻塞也被解除。
一看到后面这句话,就比较激动,这样的话,我只需要把pthread_cond_wait函数替换为 pthread_cond_timedwait函数,这样即使有的时候发生死锁了,也可以让程序自己解开,重新进入正常的运行状态.好,开始学习这个函数.
这个函数和pthread_cond_wait主要差别在于第三个参数,这个_abstime,从函数的说明来看,这个参数并不是像红字所描述的经历了abstime段时间后,而是到达了abstime时间,而后才解锁,所以这里当我们用参数的时候不能直接就写个时间间隔,比如5S,而是应该写上到达的时间点.所以初始化的过程为:
struct timespec timeout; //定义时间点
timeout.tv_sec=time(0)+1; //time(0) 代表的是当前时间 而tv_sec 是指的是秒
timeout.tv_nsec=0; //tv_nsec 代表的是纳秒时间
这样这个结构体的意思是,当函数到达到距离当前时间1s的时间点的时候,线程自动苏醒。然后再调用 pthread_cond_timedwait的方法就完全OK. 顺便再附上linux下所有的时间代表含义.
关于Linux下时间编程的问题:
1. Linux下与时间有关的结构体
struct timeval
{
int tv_sec;
int tv_usec;
};
其中tv_sec是由凌晨开始算起的秒数,tv_usec则是微秒(10E-6 second)。
struct timezone
{
int tv_minuteswest;
int tv_dsttime;
};
tv_minuteswest是格林威治时间往西方的时差,tv_dsttime则是时间的修正方式。
struct timespec
{
long int tv_sec;
long int tv_nsec;
};
tv_nsec是nano second(10E-9 second)。
struct tm
{
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;
};
tm_sec表「秒」数,在[0,61]之间,多出来的两秒是用来处理跳秒问题用的。
tm_min表「分」数,在[0,59]之间。
tm_hour表「时」数,在[0,23]之间。
tm_mday表「本月第几日」,在[1,31]之间。
tm_mon表「本年第几月」,在[0,11]之间。
tm_year要加1900表示那一年。
tm_wday表「本第几日」,在[0,6]之间。
tm_yday表「本年第几日」,在[0,365]之间,闰年有366日。
tm_isdst表是否为「日光节约时间」。
struct itimerval
{
struct timeval it_interval;
struct timeval it_value;
};
it_interval成员表示间隔计数器的初始值,而it_value成员表示间隔计数器的当前值。
2.获得当前时间
在所有的UNIX下,都有个time()的函数
time_t time(time_t *t);
这个函数会传回从epoch开始计算起的秒数,如果t是non-null,它将会把时间值填入t中。
对某些需要较高精准度的需求,Linux提供了gettimeofday()。
int gettimeofday(struct timeval * tv,struct timezone *tz);
int settimeofday(const struct timeval * tv,const struct timezone *tz);
struct tm格式时间函数
struct tm * gmtime(const time_t * t);
转换成格林威治时间。有时称为GMT或UTC。
struct tm * localtime(const time_t *t);
转换成本地时间。它可以透过修改TZ环境变数来在一台机器中,不同使用者表示不同时间。
time_t mktime(struct tm *tp);
转换tm成为time_t格式,使用本地时间。
tme_t timegm(strut tm *tp);
转换tm成为time_t格式,使用UTC时间。
double difftime(time_t t2,time_t t1);
计算秒差。
3.文字时间格式函数
char * asctime(struct tm *tp);
char * ctime(struct tm *tp);
这两个函数都转换时间格式为标准UNIX时间格式。
Mon May 3 08:23:35 1999
ctime一率使用当地时间,asctime则用tm结构内的timezone资讯来表示。
size_t strftime(char *str,size_t max,char *fmt,struct tm *tp);
strftime有点像sprintf,其格式由fmt来指定。
%a : 本第几天名称,缩写。
%A : 本第几天名称,全称。
%b : 月份名称,缩写。
%B : 月份名称,全称。
%c : 与ctime/asctime格式相同。
%d : 本月第几日名称,由零算起。
%H : 当天第几个小时,24小时制,由零算起。
%I : 当天第几个小时,12小时制,由零算起。
%j : 当年第几天,由零算起。
%m : 当年第几月,由零算起。
%M : 该小时的第几分,由零算起。
%p : AM或PM。
%S : 该分钟的第几秒,由零算起。
%U : 当年第几,由第一个日开始计算。
%W : 当年第几,由第一个一开始计算。
%w : 当第几日,由零算起。
%x : 当地日期。
%X : 当地时间。
%y : 两位数的年份。
%Y : 四位数的年份。
%Z : 时区名称的缩写。
%% : %符号。
char * strptime(char *s,char *fmt,struct tm *tp);
如同scanf一样,解译字串成为tm格式。
%h : 与%b及%B同。
%c : 读取%x及%X格式。
%C : 读取%C格式。
%e : 与%d同。
%D : 读取%m/%d/%y格式。
%k : 与%H同。
%l : 与%I同。
%r : 读取"%I:%M:%S %p"格式。
%R : 读取"%H:%M"格式。
%T : 读取"%H:%M:%S"格式。
%y : 读取两位数年份。
%Y : 读取四位数年份。
下面举一个小例子,说明如何获得系统当前时间:
time_t now;
struct tm *timenow;
char strtemp[255];
time(&now);
timenow = localtime(&now);
printf("recent time is : %s \n", asctime(timenow))