Chinaunix首页 | 论坛 | 博客
  • 博客访问: 59900
  • 博文数量: 12
  • 博客积分: 845
  • 博客等级: 军士长
  • 技术积分: 445
  • 用 户 组: 普通用户
  • 注册时间: 2012-03-25 15:03
文章分类

全部博文(12)

文章存档

2012年(12)

我的朋友

分类: C/C++

2012-05-14 10:23:22

程序员们经常编写内存管理程序,往往提心吊胆。如果不想触雷,唯一的解决办法就是发现所有潜伏的地雷并且排除它们,躲是躲不了的。本文的内容比一般教科书的要深入得多,读者需细心阅读,做到真正地通晓内存管理。

  1、内存分配方式(嵌入式培训)

  内存分配方式有三种:

  (1)从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。

  (2)在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。

  (3) 从堆上分配,亦称动态内存分配。程序在运行的时候用mallocnew申请任意多少的内存,程序员自己负责在何时用freedelete释放内存。动态内存的生存期由我们决定,使用非常灵活,但问题也最多。

  2、常见的内存错误及其对策(嵌入式培训)

  发生内存错误是件非常麻烦的事情。编译器不能自动发现这些错误,通常是在程序运行时才能捕捉到。而这些错误大多没有明显的症状,时隐时现,增加了改错的难度。有时用户怒气冲冲地把你找来,程序却没有发生任何问题,你一走,错误又发作了。 常见的内存错误及其对策如下:

  内存分配未成功,却使用了它。

  编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查指针是否为NULL。如果指针p是函数的参数,那么在函数的入口处用assert(p!=NULL)进行

  检查。如果是用mallocnew来申请内存,应该用if(p==NULL) if(p!=NULL)进行防错处理。

  内存分配虽然成功,但是尚未初始化就引用它。

  犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值错误(例如数组)。内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零值也不可省略,不要嫌麻烦。

  内存分配成功并且已经初始化,但操作越过了内存的边界。

  例如在使用数组时经常发生下标1”或者1”的操作。特别是在for循环语句中,循环次数很容易搞错,导致数组操作越界。

  忘记了释放内存,造成内存泄露。

  含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次程序突然死掉,系统出现提示:内存耗尽。

  动态内存的申请与释放必须配对,程序中mallocfree的使用次数一定要相同,否则肯定有错误(new/delete同理)。

  释放了内存却继续使用它。
 
  有三种情况:

  (1)程序中的对象调用关系过于复杂,实在难以搞清楚某个对象究竟是否已经释放了内存,此时应该重新设计数据结构,从根本上解决对象管理的混乱局面。

  (2)函数的return语句写错了,注意不要返回指向栈内存指针或者引用,因为该内存在函数体结束时被自动销毁。

  (3)使用freedelete释放了内存后,没有将指针设置为NULL。导致产生野指针

  【规则1】用mallocnew申请内存之后,应该立即检查指针值是否为NULL。防止使用指针值为NULL的内存。

  【规则2】不要忘记为数组和动态内存赋初值。防止将未被初始化的内存作为右值使用。

  【规则3】避免数组或指针的下标越界,特别要当心发生1”或者1”操作。

  【规则4】动态内存的申请与释放必须配对,防止内存泄漏。

  【规则5】用freedelete释放了内存之后,立即将指针设置为NULL,防止产生野指针

  3、指针与数组的对比(嵌入式培训)

  C /C程序中,指针和数组在不少地方可以相互替换着用,让人产生一种错觉,以为两者是等价的。

  数组要么在静态存储区被创建(如全局数组),要么在栈上被创建。数组名对应着(而不是指向)一块内存,其地址与容量在生命期内保持不变,只有数组的内容可以改变。

  指针可以随时指向任意类型的内存块,它的特征是可变,所以我们常用指针来操作动态内存。指针远比数组灵活,但也更危险。

  下面以字符串为例比较指针与数组的特性。

  3.1 修改内容

  示例3-1中,字符数组a的容量是6个字符,其内容为helloa的内容可以改变,如a[0]= ‘X’。指针p指向常量字符串“world”(位于静态存储区,内容为world),常量字符串的内容是不可以被修改的。从语法上看,编译器并不觉得语句 p[0]= ‘X’有什么不妥,但是该语句企图修改常量字符串的内容而导致运行错误。

char a[] = “hello”;

a[0] = ‘X’;

cout << a << endl;

char *p = “world”; // 注意p指向常量字符串

p[0] = ‘X’; // 编译器不能发现该错误

cout << p << endl;

复制代码

示例3.1 修改数组和指针的内容

  3.2 内容复制与比较

  不能对数组名进行直接复制与比较。示例7-3-2中,若想把数组a的内容复制给数组b,不能用语句 b = a ,否则将产生编译错误。应该用标准库函数strcpy进行复制。同理,比较ba的内容是否相同,不能用if(b==a) 来判断,应该用标准库函数strcmp进行比较。

  语句p = a 并不能把a的内容复制指针p,而是把a的地址赋给了p。要想复制a的内容,可以先用库函数mallocp申请一块容量为strlen(a) 1个字符的内存,再用strcpy进行字符串复制。同理,语句if(p==a) 比较的不是内容而是地址,应该用库函数strcmp来比较。

// 数组

char a[] = "hello";

char b[10];

10 strcpy(b, a); // 不能用 b = a;

11 if(strcmp(b, a) == 0) // 不能用 if (b == a)

12 

13 // 指针

14 int len = strlen(a);

15 char *p = (char *)malloc(sizeof(char)*(len 1));

16 strcpy(p,a); // 不要用 p = a;

17 if(strcmp(p, a) == 0) // 不要用 if (p == a)

18 

复制代码

示例3.2 数组和指针的内容复制与比较

  3.3 计算内存容量

  用运算符sizeof可以计算出数组的容量(字节数)。示例7-3-3a)中,sizeof(a)的值是12(注意别忘了’’)。指针p指向a,但是 sizeof(p)的值却是4。这是因为sizeof(p)得到的是一个指针变量的字节数,相当于sizeof(char*),而不是p所指的内存容量。 C /C语言没有办法知道指针所指的内存容量,除非在申请内存时记住它。

  注意当数组作为函数的参数进行传递时,该数组自动退化为同类型的指针。示例7-3-3b)中,不论数组a的容量是多少,sizeof(a)始终等于sizeof(char *)

19 char a[] = "hello world";

20 char *p = a;

21 cout<< sizeof(a) << endl; // 12字节

22 cout<< sizeof(p) << endl; // 4字节

复制代码

示例3.3a) 计算数组和指针的内存容量

23 void Func(char a[100])

24 {

25  cout<< sizeof(a) << endl; // 4字节而不是100字节

26 }

复制代码

示例3.3b) 数组退化为指针


4、指针参数是如何传递内存的?(嵌入式培训)

  如果函数的参数是一个指针,不要指望用该指针去申请动态内存。示例7-4-1中,Test函数的语句GetMemory(str, 200)并没有使str获得期望的内存,str依旧是NULL,为什么?

27 void GetMemory(char *p, int num)

28 {

29  p = (char *)malloc(sizeof(char) * num);

30 }

31 void Test(void)

32 {

33  char *str = NULL;

34  GetMemory(str, 100); // str 仍然为 NULL

35  strcpy(str, "hello"); // 运行错误

36 }

复制代码

示例4.1 试图用指针参数申请动态内存

  毛病出在函数GetMemory中。编译器总是要为函数的每个参数制作临时副本,指针参数p的副本是 _p,编译器使 _p = p。如果函数体内的程序修改了_p的内容,就导致参数p的内容作相应的修改。这就是指针可以用作输出参数的原因。在本例中,_p申请了新的内存,只是把 _p所指的内存地址改变了,但是p丝毫未变。所以函数GetMemory并不能输出任何东西。事实上,每执行一次GetMemory就会泄露一块内存,因为没有用free释放内存。

  如果非得要用指针参数去申请内存,那么应该改用指向指针的指针,见示例4.2

37 void GetMemory2(char **p, int num)

38 {

39  *p = (char *)malloc(sizeof(char) * num);

40 }

41 void Test2(void)

42 {

43  char *str = NULL;

44  GetMemory2(&str, 100); // 注意参数是 &str,而不是str

45  strcpy(str, "hello");

46  cout<< str << endl;

47  free(str);

48 }

复制代码

示例4.2用指向指针的指针申请动态内存

  由于指向指针的指针这个概念不容易理解,我们可以用函数返回值来传递动态内存。这种方法更加简单,见示例4.3

49 char *GetMemory3(int num)

50 {

51  char *p = (char *)malloc(sizeof(char) * num);

52  return p;

53 }

54 void Test3(void)

55 {

56  char *str = NULL;

57  str = GetMemory3(100);

58  strcpy(str, "hello");

59  cout<< str << endl;

60  free(str);

61 }

复制代码

示例4.3 用函数返回值来传递动态内存

  用函数返回值来传递动态内存这种方法虽然好用,但是常常有人把return语句用错了。这里强调不要用return语句返回指向栈内存的指针,因为该内存在函数结束时自动消亡,见示例4.4

62 char *GetString(void)

63 {

64  char p[] = "hello world";

65  return p; // 编译器将提出警告

66 }

67 void Test4(void)

68 {

69  char *str = NULL;

70  str = GetString(); // str 的内容是垃圾

71  cout<< str << endl;

72 }

复制代码

示例4.4 return语句返回指向栈内存的指针

  用调试器逐步跟踪Test4,发现执行str = GetString语句后str不再是NULL指针,但是str的内容不是“hello world”而是垃圾。
如果把示例4.4改写成示例4.5,会怎么样?

73 char *GetString2(void)

74 {

75  char *p = "hello world";

76  return p;

77 }

78 void Test5(void)

79 {

80  char *str = NULL;

81  str = GetString2();

82  cout<< str << endl;

83 }

复制代码

示例4.5 return语句返回常量字符串

  函数Test5运行虽然不会出错,但是函数GetString2的设计概念却是错误的。因为GetString2内的“hello world”是常量字符串,位于静态存储区,它在程序生命期内恒定不变。无论什么时候调用GetString2,它返回的始终是同一个只读的内存块。

  5、杜绝野指针”(嵌入式培训)

  野指针不是NULL指针,是指向垃圾内存的指针。人们一般不会错用NULL指针,因为用if语句很容易判断。但是野指针是很危险的,if语句对它不起作用。 野指针的成因主要有两种:

  (1)指针变量没有被初始化。任何指针变量刚被创建时不会自动成为NULL指针,它的缺省值是随机的,它会乱指一气。所以,指针变量在创建的同时应当被初始化,要么将指针设置为NULL,要么让它指向合法的内存。例如

84 char *p = NULL;

85 char *str = (char *) malloc(100);

复制代码

2)指针pfree或者delete之后,没有置为NULL,让人误以为p是个合法的指针。

  (3)指针操作超越了变量的作用范围。这种情况让人防不胜防,示例程序如下:

86 class A

87 {

88  public:

89   void Func(void){ cout << “Func of class A” << endl; }

90 };

91 void Test(void)

92 {

93  A *p;

94  {

95   A a;

96   p = &a; // 注意 的生命期

97  }

98  p->Func(); // p野指针

99 }

复制代码

函数Test在执行语句p->Func()时,对象a已经消失,而p是指向a的,所以p就成了野指针。但奇怪的是我运行这个程序时居然没有出错,这可能与编译器有关。


  6、有了malloc/free为什么还要new/delete?(嵌入式培训)

  mallocfreeC /C语言的标准库函数,new/delete的运算符。它们都可用于申请动态内存和释放内存。

  对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free

   因此语言需要一个能完成动态内存分配和初始化工作的运算符new,以及一个能完成清理与释放内存工作的运算符delete。注意new/delete不是库函数。我们先看一看malloc/freenew/delete如何实现对象的动态内存管理,见示例6

100 class Obj

101 {

102  public :

103   Obj(void){ cout << “Initialization” << endl; }

104   ~Obj(void){ cout << “Destroy” << endl; }

105   void Initialize(void){ cout << “Initialization” << endl; }

106   void Destroy(void){ cout << “Destroy” << endl; }

107 };

108 void UseMallocFree(void)

109 {

110  Obj *a = (obj *)malloc(sizeof(obj)); // 申请动态内存

111  a->Initialize(); // 初始化

112  //…

113  a->Destroy(); // 清除工作

114  free(a); // 释放内存

115 }

116 void UseNewDelete(void)

117 {

118  Obj *a = new Obj; // 申请动态内存并且初始化

119  //…

120  delete a; // 清除并且释放内存

121 }

复制代码

示例malloc/freenew/delete如何实现对象的动态内存管理

  类Obj的函数Initialize模拟了构造函数的功能,函数Destroy模拟了析构函数的功能。函数UseMallocFree中,由于 malloc/free不能执行构造函数与析构函数,必须调用成员函数InitializeDestroy来完成初始化与清除工作。函数 UseNewDelete则简单得多。

  所以我们不要企图用malloc/free来完成动态对象的内存管理,应该用new/delete。由于内部数据类型的对象没有构造与析构的过程,对它们而言malloc/freenew/delete是等价的。

  既然new/delete的功能完全覆盖了malloc/free,为什么不把malloc/free淘汰出局呢?这是因为程序经常要调用C函数,而C程序只能用malloc/free管理动态内存。

  如果用free释放“new创建的动态对象,那么该对象因无法执行析构函数而可能导致程序出错。如果用delete释放“malloc申请的动态内存 ,理论上讲程序不会出错,但是该程序的可读性很差。所以new/delete必须配对使用,malloc/free也一样。

  7、内存耗尽怎么办?(嵌入式培训)

  如果在申请动态内存时找不到足够大的内存块,mallocnew将返回NULL指针,宣告内存申请失败。通常有三种方式处理内存耗尽问题。

  (1)判断指针是否为NULL,如果是则马上用return语句终止本函数。例如:

122 void Func(void)

123 {

124  A *a = new A;

125  if(a == NULL)

126  {

127   return;

128  }

129  

130 }

复制代码

2)判断指针是否为NULL,如果是则马上用exit(1)终止整个程序的运行。例如:

131 void Func(void)

132 {

133  A *a = new A;

134  if(a == NULL)

135  {

136   cout << “Memory Exhausted” << endl;

137   exit(1);

138  }

139  

140 }

复制代码

3)为newmalloc设置异常处理函数。例如Visual C 可以用_set_new_hander函数为new设置用户自己定义的异常处理函数,也可以让malloc享用与new相同的异常处理函数。详细内容请参考使用手册。

  上述(1)(2)方式使用最普遍。如果一个函数内有多处需要申请动态内存,那么方式(1)就显得力不从心(释放内存很麻烦),应该用方式(2)来处理。

  很多人不忍心用exit(1),问:不编写出错处理程序,让操作系统自己解决行不行?

  不行。如果发生内存耗尽这样的事情,一般说来应用程序已经无药可救。如果不用exit(1) 把坏程序杀死,它可能会害死操作系统。道理如同:如果不把歹徒击毙,歹徒在老死之前会犯下更多的罪。

  有一个很重要的现象要告诉大家。对于32位以上的应用程序而言,无论怎样使用mallocnew,几乎不可能导致内存耗尽。我在Windows 98下用Visual C 编写了测试程序,见示例7。这个程序会无休止地运行下去,根本不会终止。因为32位操作系统支持虚存,内存用完了,自动用硬盘空间顶替。我只听到硬盘嘎吱嘎吱地响,Window 98已经累得对键盘、鼠标毫无反应。

  我可以得出这么一个结论:对于32位以上的应用程序,内存耗尽错误处理程序毫无用处。这下可把UnixWindows程序员们乐坏了:反正错误处理程序不起作用,我就不写了,省了很多麻烦。

  我不想误导读者,必须强调:不加错误处理将导致程序的质量很差,千万不可因小失大。

141 void main(void)

142 {

143  float *p = NULL;

144  while(TRUE)

145  {

146   p = new float[1000000];

147   cout << “eat memory” << endl;

148   if(p==NULL)

149    exit(1);

150  }

151 }

复制代码

示例7试图耗尽操作系统的内存


  8malloc/free 的使用要点(嵌入式培训)

  函数malloc的原型如下:

152 void * malloc(size_t size);

复制代码

malloc申请一块长度为length的整数类型的内存,程序如下:

153 int *p = (int *) malloc(sizeof(int) * length);

复制代码

我们应当把注意力集中在两个要素上:类型转换“sizeof”

  * malloc返回值的类型是void *,所以在调用malloc时要显式地进行类型转换,将void * 转换成所需要的指针类型。

  * malloc函数本身并不识别要申请的内存是什么类型,它只关心内存的总字节数。我们通常记不住int, float等数据类型的变量的确切字节数。例如int变量在16位系统下是2个字节,在32位下是4个字节;而float变量在16位系统下是4个字节,在32位下也是4个字节。最好用以下程序作一次测试:

154 cout << sizeof(char) << endl;

155 cout << sizeof(int) << endl;

156 cout << sizeof(unsigned int) << endl;

157 cout << sizeof(long) << endl;

158 cout << sizeof(unsigned long) << endl;

159 cout << sizeof(float) << endl;

160 cout << sizeof(double) << endl;

161 cout << sizeof(void *) << endl;

复制代码

malloc“()”中使用sizeof运算符是良好的风格,但要当心有时我们会昏了头,写出 p = malloc(sizeof(p))这样的程序来。

  函数free的原型如下:

162 void free( void * memblock );

复制代码

为什么free 函数不象malloc函数那样复杂呢?这是因为指针p的类型以及它所指的内存的容量事先都是知道的,语句free(p)能正确地释放内存。如果p是 NULL指针,那么freep无论操作多少次都不会出问题。如果p不是NULL指针,那么freep连续操作两次就会导致程序运行错误。

  9new/delete 的使用要点(嵌入式培训)

  运算符new使用起来要比函数malloc简单得多,例如:

163 int *p1 = (int *)malloc(sizeof(int) * length);

164 int *p2 = new int[length];

复制代码

这是因为new内置了sizeof、类型转换和类型安全检查功能。对于非内部数据类型的对象而言,new在创建动态对象的同时完成了初始化工作。如果对象有多个构造函数,那么new的语句也可以有多种形式。例如

165 class Obj

166 {

167  public :

168   Obj(void); // 无参数的构造函数

169   Obj(int x); // 带一个参数的构造函数

170   

171 }

172 void Test(void)

173 {

174  Obj *a = new Obj;

175  Obj *b = new Obj(1); // 初值为1

176  

177  delete a;

178  delete b;

179 }

复制代码

如果用new创建对象数组,那么只能使用对象的无参数构造函数。例如

180 Obj *objects = new Obj[100]; // 创建100个动态对象

复制代码

不能写成

181 Obj *objects = new Obj[100](1);// 创建100个动态对象的同时赋初值1

复制代码

在用delete释放对象数组时,留意不要丢了符号‘[]’。例如

182 delete []objects; // 正确的用法

183 delete objects; // 错误的用法

复制代码

后者相当于delete objects[0],漏掉了另外99个对象。

  10、一些心得体会(嵌入式培训)

  我认识不少技术不错的C /C程序员,很少有人能拍拍胸脯说通晓指针与内存管理(包括我自己)。我最初学习C语言时特别怕指针,导致我开发第一个应用软件(约1万行C代码)时没有使用一个指针,全用数组来顶替指针,实在蠢笨得过分。躲避指针不是办法,后来我改写了这个软件,代码量缩小到原先的一半。

  我的经验教训是:

  (1)越是怕指针,就越要使用指针。不会正确使用指针,肯定算不上是合格的程序员。

  (2)必须养成使用调试器逐步跟踪程序的习惯,只有这样才能发现问题的本质。

 

了解更多请关注:
粤嵌教育:

粤嵌新浪微博:

粤嵌腾讯微博:

阅读(1150) | 评论(0) | 转发(1) |
给主人留下些什么吧!~~