分类: Python/Ruby
2015-04-28 18:47:53
本文的主题就是讲解Zookeeper通信模型,本节将通过一个概要图来说明Zookeeper的通信模型。
在Zookeeper整个系统中,有3中角色的服务,client、Follower、leader。其中client负责发起应用的请求,Follower接受client发起的请求,参与事务的确认过程,在leader crash后的leader选择。而leader主要承担事务的协调,当然leader也可以承担接收客户请求的功能,为了方便描述,后面的描述都是client与Follower之间的通信,如果Zookeeper的配置支持leader接收client的请求,client与leader的通信跟client与Follower的通信模式完全一样。Follower与leader之间的角色可能在某一时刻进行转换。一个Follower在leader crash掉以后可能被集群(Quorum)的Follower选举为leader。而一个leader在crash后,再次加入集群(Quorum)将作为Follower角色存在。在一个集群(Quorum)中,除了在选举leader的过程中没有Follower和leader的区分外,其他任何时刻都只有1个leader和多个Follower。Client、Follower和leader之间的通信架构如下:
Client与Follower之间
为了使客户端具有较高的吞吐量,Client与Follower之间采用NIO的通信方式。当client需要与Zookeeper service打交道时,首先读取配置文件确定集群内的所有server列表,按照一定的load balance算法选取一个Follower作为一个通信目标。这样client和Follower之间就有了一条由NIO模式构成的通信通道。这条通道会一直保持到client关闭session或者因为client或Follower任一方因某种原因异常中断通信连接。正常情况下, client与Follower在没有请求发起的时候都有心跳检测。
Follower与leader之间
Follower与leader之间的通信主要是因为Follower接收到像(create, delete, setData, setACL, createSession, closeSession, sync)这样一些需要让leader来协调最终结果的命令,将会导致Follower与leader之间产生通信。由于leader与Follower之间的关系式一对多的关系,非常适合client/server模式,因此他们之间是采用c/s模式,由leader创建一个socket server,监听各Follower的协调请求。
集群在选择leader过程中
由于在选择leader过程中没有leader,在集群中的任何一个成员都需要与其他所有成员进行通信,当集群的成员变得很大时,这个通信量是很大的。选择leader的过程发生在Zookeeper系统刚刚启动或者是leader失去联系后,选择leader过程中将不能处理用户的请求,为了提高系统的可用性,一定要尽量减少这个过程的时间。选择哪种方式让他们可用快速得到选择结果呢?Zookeeper在这个过程中采用了策略模式,可用动态插入选择leader的算法。系统默认提供了3种选择算法,AuthFastLeaderElection,FastLeaderElection,LeaderElection。其中AuthFastLeaderElection和LeaderElection采用UDP模式进行通信,而FastLeaderElection仍然采用tcp/ip模式。在Zookeeper新的版本中,新增了一个learner角色,减少选择leader的参与人数。使得选择过程更快。一般说来Zookeeper leader的选择过程都非常快,通常<200ms。
要详细了解Zookeeper的通信流程,我们首先得了解Zookeeper提供哪些客户端的接口,我们按照具有相同的通信流程的接口进行分组:
Zookeeper的系统管理接口是指用来查看Zookeeper运行状态的一些命令,他们都是具有4字母构成的命令格式。主要包括:
当用户发送这些命令的到server时,由于这些请求只与连接的server相关,没有业务处理逻辑,非常简单。Zookeeper对这些命令采用最快的效率进行处理。这些命令发送到server端只占用一个4字节的int类型来表示不同命令,没有采用字符串处理。当服务器端接收到这些命令,立刻返回结果。
Session创建
任何客户端的业务请求都是基于session存在的前提下。Session是维持client与Follower之间的一条通信通道,并维持他们之间从创建开始后的所有状态。当启动一个Zookeeper client的时候,首先按照一定的算法查找出follower, 然后与Follower建立起NIO连接。当连接建立好后,发送create session的命令,让server端为该连接创建一个维护该连接状态的对象session。当server收到create session命令,先从本地的session列表中查找看是否已经存在有相同sessionId,则关闭原session重新创建新的session。创建session的过程将需要发送到Leader,再由leader通知其他follower,大部分Follower都将此操作记录到本地日志再通知leader后,leader发送commit命令给所有Follower,连接客户端的Follower返回创建成功的session响应。Leader与Follower之间的协调过程将在后面的做详细讲解。当客户端成功创建好session后,其他的业务命令就可以正常处理了。
Zookeeper查询命令
Zookeeper查询命令主要用来查询服务器端的数据,不会更改服务器端的数据。所有的查询命令都可以即刻从client连接的server立即返回,不需要leader进行协调,因此查询命令得到的数据有可能是过期数据。但由于任何数据的修改,leader都会将更改的结果发布给所有的Follower,因此一般说来,Follower的数据是可以得到及时的更新。这些查询命令包括以下这些命令:
所有的查询命令都可以指定watcher,通过它来跟踪指定path的数据变化。一旦指定的数据发生变化(create,delete,modified,children_changed),服务器将会发送命令来回调注册的watcher. Watcher详细的讲解将在Zookeeper的Watcher中单独讲解。
Zookeeper修改命令
Zookeeper修改命令主要是用来修改节点数据或结构,或者权限信息。任何修改命令都需要提交到leader进行协调,协调完成后才返回。修改命令主要包括:
我们根据前面的通信图知道,任何修改命令都需要leader协调。 在leader的协调过程中,需要3次leader与Follower之间的来回请求响应。并且在此过程中还会涉及事务日志的记录,更糟糕的情况是还有take snapshot的操作。因此此过程可能比较耗时。但Zookeeper的通信中最大特点是异步的,如果请求是连续不断的,Zookeeper的处理是集中处理逻辑,然后批量发送,批量的大小也是有控制的。如果请求量不大,则即刻发送。这样当负载很大时也能保证很大的吞吐量,时效性也在一定程度上进行了保证。
Zookeeper通过链式的processor来处理业务请求,每个processor负责处理特定的功能。不同的Zookeeper角色的服务器processor链是不一样的,以下分别介绍standalone Zookeeper server, leader和Follower不同的processor链。
Zookeeper中的processor
Standalone zookeeper processor链
Leader processor链
Follower processor链