分类: LINUX
2014-06-06 08:58:56
在本系列文章的第一篇:Linux中断(interrupt)子系统之一:中断系统基本原理,我把通用中断子系统分为了4个层次,其中的驱动程序接口层和中断通用逻辑层的界限实际上不是很明确,因为中断通用逻辑层的很多接口,既可以被驱动程序使用,也可以被硬件封装层使用,所以我把这两部分的内容放在一起进行讨论。
本章我将会讨论这两层对外提供的标准接口和内部实现机制,几乎所有的接口都是围绕着irq_desc和irq_chip这两个结构体进行的,对这两个结构体不熟悉的读者可以现读一下前面几篇文章。
/*****************************************************************************************************/
声明:本博内容均由http://blog.csdn.net/droidphone原创,转载请注明出处,谢谢!
/*****************************************************************************************************/
中断子系统为我们提供了一系列用于irq的打开和关闭的函数接口,其中最基本的一对是:
点击(此处)折叠或打开
disable_irq的最后,调用了synchronize_irq,该函数通过IRQ_INPROGRESS标志,确保action链表中所有的handler都已经处理完毕,然后还要通过wait_event等待该irq所有的中断线程退出。正因为这样,在中断上下文中,不应该使用该API来关闭irq,同时要确保调用该API的函数不能拥有该irq处理函数或线程的资源,否则就会发生死锁!!如果一定要在这两种情况下关闭irq,中断子系统为我们提供了另外一个API,它不会做出任何等待动作:
点击(此处)折叠或打开
我们知道,中断子系统内部定义了几个重要的数据结构,例如:irq_desc,irq_chip,irq_data等等,这些数据结构的各个字段控制或影响着中断子系统和各个irq的行为和实现方式。通常,驱动程序不应该直接访问这些数据结构,直接访问会破会中断子系统的封装性,为此,中断子系统为我们提供了一系列的访问接口函数,用于访问这些数据结构。
存取irq_data结构相关字段的API:
irq_set_chip(irq, *chip) / irq_get_chip(irq) 通过irq编号,设置、获取irq_cip结构指针;
irq_set_handler_data(irq, *data) / irq_get_handler_data(irq) 通过irq编号,设置、获取irq_desc.irq_data.handler_data字段,该字段是每个irq的私有数据,通常用于硬件封装层,例如中断控制器级联时,父irq用该字段保存子irq的起始编号。
irq_set_chip_data(irq, *data) / irq_get_chip_data(irq) 通过irq编号,设置、获取irq_desc.irq_data.chip_data字段,该字段是每个中断控制器的私有数据,通常用于硬件封装层。
irq_set_irq_type(irq, type) 用于设置中断的电气类型,可选的类型有:
- IRQ_TYPE_EDGE_RISING
- IRQ_TYPE_EDGE_FALLING
- IRQ_TYPE_EDGE_BOTH
- IRQ_TYPE_LEVEL_HIGH
- IRQ_TYPE_LEVEL_LOW
irq_get_irq_data(irq) 通过irq编号,获取irq_data结构指针;
irq_data_get_irq_chip(irq_data *d) 通过irq_data指针,获取irq_chip字段;
irq_data_get_irq_chip_data(irq_data *d) 通过irq_data指针,获取chip_data字段;
irq_data_get_irq_handler_data(irq_data *d) 通过irq_data指针,获取handler_data字段;
设置中断流控处理回调API:
irq_set_handler(irq, handle) 设置中断流控回调字段:irq_desc.handle_irq,参数handle的类型是irq_flow_handler_t。
irq_set_chip_and_handler(irq, *chip, handle) 同时设置中断流控回调字段和irq_chip指针:irq_desc.handle_irq和irq_desc.irq_data.chip。
irq_set_chip_and_handler_name(irq, *chip, handle, *name) 同时设置中断流控回调字段和irq_chip指针以及irq名字:irq_desc.handle_irq、irq_desc.irq_data.chip、irq_desc.name。
irq_set_chained_handler(irq, *chip, handle) 设置中断流控回调字段:irq_desc.handle_irq,同时设置标志:IRQ_NOREQUEST、IRQ_NOPROBE、IRQ_NOTHREAD,该api通常用于中断控制器的级联,父控制器通过该api设置流控回调后,同时设置上述三个标志位,使得父控制器的中断线不允许被驱动程序申请。
系统启动阶段,中断子系统完成了必要的初始化工作,为驱动程序申请中断服务做好了准备,通常,我们用一下API申请中断服务:
点击(此处)折叠或打开
handler 中断服务回调函数,该回调运行在中断上下文中,并且cpu的本地中断处于关闭状态,所以该回调函数应该只是执行需要快速响应的操作,执行时间应该尽可能短小,耗时的工作最好留给下面的thread_fn回调处理。
thread_fn 如果该参数不为NULL,内核会为该irq创建一个内核线程,当中断发生时,如果handler回调返回值是IRQ_WAKE_THREAD,内核将会激活中断线程,在中断线程中,该回调函数将被调用,所以,该回调函数运行在进程上下文中,允许进行阻塞操作。
flags 控制中断行为的位标志,IRQF_XXXX,例如:IRQF_TRIGGER_RISING,IRQF_TRIGGER_LOW,IRQF_SHARED等,在include/linux/interrupt.h中定义。
name 申请本中断服务的设备名称,同时也作为中断线程的名称,该名称可以在/proc/interrupts文件中显示。
dev 当多个设备的中断线共享同一个irq时,它会作为handler的参数,用于区分不同的设备。
下面我们分析一下request_threaded_irq的工作流程。函数先是根据irq编号取出对应的irq_desc实例的指针,然后分配了一个irqaction结构,用参数handler,thread_fn,irqflags,devname,dev_id初始化irqaction结构的各字段,同时做了一些必要的条件判断:该irq是否禁止申请?handler和thread_fn不允许同时为NULL,最后把大部分工作委托给__setup_irq函数:
点击(此处)折叠或打开
点击(此处)折叠或打开
点击(此处)折叠或打开
点击(此处)折叠或打开
点击(此处)折叠或打开
点击(此处)折叠或打开
点击(此处)折叠或打开
在移动设备系统中,存在着大量的多功能复合设备,最常见的是一个芯片中,内部集成了多个功能部件,或者是一个模块单元内部集成了功能部件,这些内部功能部件可以各自产生中断请求,但是芯片或者硬件模块对外只有一个中断请求引脚,我们可以使用多种方式处理这些设备的中断请求,以下我们逐一讨论这些方法。
对于这种复合设备,通常设备中会提供某种方式,以便让CPU获取真正的中断来源, 方式可以是一个内部寄存器,gpio的状态等等。单一中断模式是指驱动程序只申请一个irq,然后在中断处理程序中通过读取设备的内部寄存器,获取中断源,然后根据不同的中断源做出不同的处理,以下是一个简化后的代码:
点击(此处)折叠或打开
共享中断模式充分利用了通用中断子系统的特性,经过前面的讨论,我们知道,irq对应的irq_desc结构中的action字段,本质上是一个链表,这给我们实现中断共享提供了必要的基础,只要我们以相同的irq编号多次申请中断服务,那么,action链表上就会有多个irqaction实例,当中断发生时,中断子系统会遍历action链表,逐个执行irqaction实例中的handler回调,根据handler回调的返回值不同,决定是否唤醒中断线程。需要注意到是,申请多个中断时,irq编号要保持一致,flag参数最好也能保持一致,并且都要设上IRQF_SHARED标志。在使用共享中断时,最好handler和thread_fn都要提供,在各自的中断处理回调handler中,做出以下处理: