参考文章:
http://www.ibm.com/developerworks/cn/linux/l-async/
http://blog.chinaunix.net/uid-52437-id-2108895.html
同步阻塞 I/O
最常用的一个模型是同步阻塞 I/O 模型。在这个模型中,用户空间的应用程序执行一个系统调用,这会导致应用程序阻塞。这意味着应用程序会一直阻塞,直到系统调用完成为止(数据传输完成或发生错误)。调用应用程序处于一种不再消费 CPU 而只是简单等待响应的状态,因此从处理的角度来看,这是非常有效的。
图 2 给出了传统的阻塞 I/O 模型,这也是目前应用程序中最为常用的一种模型。其行为非常容易理解,其用法对于典型的应用程序来说都非常有效。在调用 read 系统调用时,应用程序会阻塞并对内核进行上下文切换。然后会触发读操作,当响应返回时(从我们正在从中读取的设备中返回),数据就被移动到用户空间的缓冲区中。然后应用程序就会解除阻塞(read 调用返回)。
图 2. 同步阻塞 I/O 模型的典型流程
从应用程序的角度来说,read 调用会延续很长时间。实际上,在内核执行读操作和其他工作时,应用程序的确会被阻塞。
例如,“在调用 read 系统调用时,应用程序会阻塞并对内核进行上下文切换。然后会触发读操作,当响应返回时(从我们正在从中读取的设备中返回),数据就被移动到用户空间的缓冲区中。然后应用程序就会解除阻塞(read 调用返回)。”
举一个浅显的例子,就好比你去一个银行柜台存钱。首先,你会将存钱的单子填好,然后交给柜员。这里,你就好比是application,单子就是 调用的 system call,柜员就是kernel。提交好单子后,你就坐在柜台前等,相当于开始进行等待。柜员办好以后会给你一个回执,表示办好了,这就是 response。然后你就可以拿着回执干其它的事了。注意,这个时候,如果你办完之后马上去查账,存的钱已经打到你的账户上了。后面你会发现,这点很重要
同步非阻塞 I/O
同步阻塞 I/O 的一种效率稍低的变种是同步非阻塞 I/O。在这种模型中,设备是以非阻塞的形式打开的。这意味着 I/O 操作不会立即完成,read操作可能会返回一个错误代码,说明这个命令不能立即满足(EAGAIN 或 EWOULDBLOCK),如图 3 所示。
图 3. 同步非阻塞 I/O 模型的典型流程
在linux下,应用程序可以通过设置文件描述符的属性O_NONBLOCK,I/O操作可以立即返回,但是并不保证I/O操作成功。
也就是说,当应用程序设置了O_NONBLOCK之后,执行write操作,调用相应的system call,这个system call会从内核中立即返回。但是在这个返回的时间点,数据可能还没有被真正的写入到指定的地方。也就是说,kernel只是很快的返回了这个 system call(这样,应用程序不会被这个IO操作blocking),但是这个system call具体要执行的事情(写数据)可能并没有完成。而对于应用程序,虽然这个IO操作很快就返回了,但是它并不知道这个IO操作是否真的成功了,如果想 知道,需要应用程序主动地去问kernel。
这次不是去银行存钱,而是去银行汇款。同样的,你也需要填写汇款单然后交给柜员,柜员进行一些简单的手续处理就能够给你回执。但是,你拿到回执并 不意味着钱已经打到了对方的账上。事实上,一般汇款的周期大概是24个小时,如果你要以存钱的模式来汇款的话,意味着你需要在银行等24个小时,这显然是 不现实的。所以,同步非阻塞IO在实际生活中也是有它的意义的。
异步阻塞 I/O
另外一个阻塞解决方案是带有阻塞通知的非阻塞 I/O。在这种模型中,配置的是非阻塞 I/O,然后使用阻塞 select 系统调用来确定一个 I/O 描述符何时有操作。使 select 调用非常有趣的是它可以用来为多个描述符提供通知,而不仅仅为一个描述符提供通知。对于每个提示符来说,我们可以请求这个描述符可以写数据、有读数据可用以及是否发生错误的通知。
图 4. 异步阻塞 I/O 模型的典型流程 (select)
select 调用的主要问题是它的效率不是非常高。尽管这是异步通知使用的一种方便模型,但是对于高性能的 I/O 操作来说不建议使用。
和之前一样,应用程序要执行read操作,因此调用一个system call,这个system call被传递给了kernel。但在应用程序这边,它调用system call之后,并不等待kernel返回response,这一点是和前面两种机制不一样的地方。这也是为什么它被称为异步的原因。但是为什么称其为阻塞 呢?这是因为虽然应用程序是一个异步的方式,但是select()函数会将应用程序阻塞住,一直等到这个system call有结果返回了,再通知应用程序。也就是说,“在这种模型中,配置的是非阻塞 I/O,然后使用阻塞 select 系统调用来确定一个 I/O 描述符何时有操作。”
所以,从IO操作的实际效果来看,异步阻塞IO和第一种同步阻塞IO是一样的,应用程序都是一直等到IO操作成功之后(数据已经被写入或者读取),才开始进行下面的工作。异步阻塞IO的好处在于一个select函数可以为多个描述符提供通知,提高了并发性。
关于提高并发性这点,我们还以银行为例说明。比如说一个银行柜台,现在有10个人想存钱。按照现在银行的做法,一个个排队。第一个人先填存款单, 然后提交,然后柜员处理,然后给回执,成功后再轮到下一个人。大家应该都在银行排过对,这样的流程是很痛苦的。如果按照异步阻塞的机制,10个人都填好存 款单,然后都提交给柜台,提交完之后所有的10个人就在银行大厅等待。这时候会专门有个人,他会了解存款单处理的情况,一旦有存款单处理完毕,他会将回执 交给相应的正在大厅等待的人,这个拿到回执的人就可以去干其他的事情了。而前面提到的这个专人,就对应于select函数。
异步非阻塞 I/O(AIO)
最后,异步非阻塞 I/O 模型是一种处理与 I/O 重叠进行的模型。读请求会立即返回,说明 read 请求已经成功发起了。在后台完成读操作时,应用程序然后会执行其他处理操作。当 read 的响应到达时,就会产生一个信号或执行一个基于线程的回调函数来完成这次 I/O 处理过程。
图 5. 异步非阻塞 I/O 模型的典型流程
在一个进程中为了执行多个 I/O 请求而对计算操作和 I/O 处理进行重叠处理的能力利用了处理速度与 I/O 速度之间的差异。当一个或多个 I/O 请求挂起时,CPU 可以执行其他任务;或者更为常见的是,在发起其他 I/O 的同时对已经完成的 I/O 进行操作。
如图所示,应用程序提交read请求的system call,然后,kernel开始处理相应的IO操作,而同时,应用程序并不等kernel返回响应,就会开始执行其他的处理操作(应用程序没有被IO操 作所阻塞)。当kernel执行完毕,返回read的响应,就会产生一个信号或执行一个基于线程的回调函数来完成这次 I/O 处理过程。
比如银行存钱。现在某银行新开通了一项存钱业务。用户之需要将存款单交给柜台,然后无需等待就可以离开了。柜台办好以后会给用户发送一条短信,告知交易成功。这样用户不需要在柜台前进行长时间的等待,同时,也能够得到确切的消息知道交易完成。
从前面的介绍中可以看出,所谓的同步和异步,在这里指的是application和kernel之间的交互方式。如果application不需 要等待 kernel的回应,那么它就是异步的。如果application提交完IO请求后,需要等待“回执”,那么它就是同步的。
而阻塞和非阻塞,指的是application是否等待IO操作的完成。如果application必须等到IO操作实际完成以后再执行下面的操作,那么它是阻塞的。反之,如果不等待IO操作的完成就开始执行其它操作,那么它是非阻塞的。
相关概念理解:
同步和异步是指一个过程而言,同步:过程是按照固定次序执行的,前后次需是有明确逻辑语义的,不能颠倒。而异步,则对次序要求不严格。也就是说作为过程执行主体(如应用程序)在执行过程中是否等待 服务方的返回,等待则是同步,否则是异步。只有等待返回后才继续进行后续步骤。
阻塞非阻塞:是指某执行函数、过程是否立刻返回。也就是程序调用某个函数是否立刻返回。在程序中,程序是由无数个函数、小过程体组成的,往往这些一般是系统预定义的。
同步异步是站在程序的视角看的,同步是有次序不可随意划分颠倒的,异步次序不是固定的。
阻塞非阻塞是指组成程序的各个单位、元素而言,粒度不同。这些单位组成了一个程序体。比如系统函数,当然也有自定义函数
阅读(921) | 评论(0) | 转发(0) |