Chinaunix首页 | 论坛 | 博客
  • 博客访问: 2886370
  • 博文数量: 471
  • 博客积分: 7081
  • 博客等级: 少将
  • 技术积分: 5369
  • 用 户 组: 普通用户
  • 注册时间: 2012-01-04 21:55
文章分类

全部博文(471)

文章存档

2014年(90)

2013年(69)

2012年(312)

分类: C/C++

2012-09-05 16:12:04

遍历序列

1.遍历二叉树的执行踪迹
     三种递归遍历算法的搜索路线相同(如下图虚线所示)。 
具体线路为:
     从根结点出发,逆时针沿着二叉树外缘移动,对每个结点均途径三次,最后回到根结点。
        

2.遍历序列

(1) 中序序列
    中序遍历二叉树时,对结点的访问次序为中序序列
 【例】中序遍历上图所示的二叉树时,得到的中序序列为:
                D B A E C F
(2) 先序序列
    先序遍历二叉树时,对结点的访问次序为先序序列
    【例】先序遍历上图所示的二叉树时,得到的先序序列为:
                A B D C E F
(3) 后序序列
     后序遍历二叉树时,对结点的访问次序为后序序列
 【例】后序遍历上图所示的二叉树时,得到的后序序列为:
                D B E F C A
  注意:
  (1) 在搜索路线中,若访问结点均是第一次经过结点时进行的,则是前序遍历;若访问结点均是在第二次(或第三次)经过结点时进行的,则是中序遍历(或后序遍历)。只要将搜索路线上所有在第一次、第二次和第三次经过的结点分别列表,即可分别得到该二叉树的前序序列、中序序列和后序序列。
  (2) 上述三种序列都是线性序列,有且仅有一个开始结点和一个终端结点,其余结点都有且仅有一个前趋结点和一个后继结点。为了区别于树形结构中前趋(即双亲)结点和后继(即孩子)结点的概念,对上述三种线性序列,要在某结点的前趋和后继之前冠以其遍历次序名称。
【例】上图所示的二叉树中结点C,其前序前趋结点是D,前序后继结点是E;中序前趋结点是E,中序后继结点是F;后序前趋结点是F,后序后继结点是A。但是就该树的逻辑结构而言,C的前趋结点是A,后继结点是E和F。

遍历算法

1.中序遍历的递归算法定义:
     若二叉树非空,则依次执行如下操作:
         (1)遍历左子树;
         (2)访问根结点;
         (3)遍历右子树。

2.先序遍历的递归算法定义:
    若二叉树非空,则依次执行如下操作:
         (1) 访问根结点;
         (2) 遍历左子树;
         (3) 遍历右子树。

3.后序遍历得递归算法定义:
    若二叉树非空,则依次执行如下操作:
         (1)遍历左子树;
         (2)遍历右子树;
         (3)访问根结点。

preorder(bintree t)
 {//对二叉树进行先序遍历
  if (t){
   printf("%c",t->data);
   preorder(t->lchild);
   preorder(t->rchild);
  }//end of if
 }//end of preorder
  
inorder(bintree t)
 {//对二叉树进行中序遍历
  if (t){
       inorder(t->lchild);
       printf("%c",t->data);
       inorder(t->rchild);
     }//end of if
 }//end of inorder

postorder(bintree t)
 {//对二叉树进行后序遍历
  if (t){
      postorder(t->lchild);
      postorder(t->rchild);
      printf("%c",t->data);
     }//end of if
 }//end of postorder

二叉链表的构造

1. 基本思想

     基于先序遍历的构造,即以二叉树的先序序列为输入构造。
  注意:
     先序序列中必须加入虚结点以示空指针的位置。
 【例】
  建立上图所示二叉树,其输入的先序序列是:ABD∮∮CE∮∮F∮∮。

2. 构造算法
     假设虚结点输入时以空格字符表示,相应的构造算法为:
     void CreateBinTree (BinTree *T)
      { //构造二叉链表。T是指向根指针的指针,故修改*T就修改了实参(根指针)本身
        char ch;
        if((ch=getchar())=='') *T=NULL; //读人空格,将相应指针置空 
        else{ //读人非空格
              *T=(BinTNode *)malloc(sizeof(BinTNode)); //生成结点
              (*T)->data=ch;
              CreateBinTree(&(*T)->lchild); //构造左子树
              CreateBinTree(&(*T)->rchild); //构造右子树
             }
      }
  注意:
     调用该算法时,应将待建立的二叉链表的根指针的地址作为实参。
【例】
 设root是一根指针(即它的类型是BinTree),则调用CreateBinTree(&root)后root就指向了已构造好的二叉链表的根结点。

 附源代码


点击(此处)折叠或打开

  1. #include
  2. #include
  3. typedef char datatype;
  4. typedef struct node
  5. {
  6.     datatype data;
  7.     struct node *lchild,*rchild;
  8. }bintnode;
  9. typedef bintnode *bintree;

  10.     void createbintree(bintree *t)
  11.     {
  12.     //输入二叉树的先序遍历序列,创建二叉链表
  13.         char ch;
  14.         ch=getchar();
  15.         if(ch=='#')
  16.             *t=NULL;//如果读入空格字符,创建空树,T是指向指针的指针,*t就相当于一个bintree指针,专门指向bintnode;
  17.         else
  18.         {
  19.             (*t)=(bintnode*)malloc(sizeof(bintnode));
  20.             (*t)->data=ch;
  21.             createbintree(&(*t)->lchild);//根据先序遍历,继续创建左子树,让客户端继续输入
  22.             createbintree(&(*t)->rchild);//创建完左子树,继续创建右子树
  23.         } //递归调用,自动返回
  24.     }
  25.     void preorder(bintree t)
  26.     {
  27.         if(t)
  28.         {
  29.             printf("%c ",t->data);//先访问根结点,再遍历左子树,跟着右子树
  30.             preorder(t->lchild);
  31.             preorder(t->rchild);
  32.         }
  33.         
  34.     }
  35.     void inorder(bintree t)
  36.     {
  37.         if(t)
  38.         {
  39.             inorder(t->lchild);
  40.             printf("%c ",t->data);//
  41.             inorder(t->rchild);
  42.         }
  43.     }
  44.     void postorder(bintree t)
  45.     {
  46.         if(t)
  47.         {
  48.             postorder(t->lchild);
  49.             postorder(t->rchild);
  50.             printf("%c ",t->data);//
  51.         }
  52.     }
  53. int main()
  54. {

  55. /*
  56. 这里的输入要严格按照正确的顺序才能结束.这里要用到二叉树的一个性质,
  57. 就是说对于有n个节点的二叉树,就有n+1个空域,在这里即为如果你输入了n个
  58. 元素,那么一定要有n+1个#才会结束迭代过程.
  59. */
  60.     bintree t=NULL;
  61.     createbintree(&t);//这样才能改变T,指向指针的指针
  62.     preorder(t);
  63.     printf("\n");
  64.     inorder(t);
  65.     printf("\n");
  66.     postorder(t);
  67.     printf("\n");
  68.     getchar();
  69.     return 0;
  70. }
  71. /*
  72. 输入:ABDH##I##EJ##K##CF#L##G##
  73. 前序遍历:A B D H I E J K C F L G
  74. 中序遍历:H D I B J E K A F L C G
  75. 后序遍历:H I D J K E B L F G C A
  76. */

输入:ABDH##I##EJ##K##CF#L##G##
前序遍历:A B D H I E J K C F L G
中序遍历:H D I B J E K A F L C G
后序遍历:H I D J K E B L F G C A

二叉树

阅读(1749) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~