分类:
2012-02-24 15:17:20
【IT168 技术文档】
第一部分Binder的组成
1.1 程序部分驱动程序的部分在以下的文件夹中:
kernel/include/linux/binder.h
kernel/drivers/android/binder.c
binder驱
动程序是一个miscdevice,主设备号为10,此设备号使用动态获得(MISC_DYNAMIC_MINOR),其设备的节点为:
/dev/binder
binder驱动程序会在proc文件系统中建立自己的信息,其文件夹为/proc/binde,其中包含如下内容:
proc目录:调用
Binder各个进程的内容
state文件:使用函数binder_read_proc_state
stats文件:使用函数
binder_read_proc_stats
transactions文件:使用函数
binder_read_proc_transactions
transaction_log文件:使用函数
binder_read_proc_transaction_log,其参数为binder_transaction_log (类型为struct
binder_transaction_log)
failed_transaction_log文件:使用函数
binder_read_proc_transaction_log 其参数为
binder_transaction_log_failed
(类型为struct binder_transaction_log)
在binder文件被打开后,其私有数据(private_data)的类型:
struct binder_proc
在这个数据结构中,主要包含了当前进程、进程ID、映射信息、Binder的统计信息和线程
信息等。
在用户空间对Binder驱动程序进行控制主要使用的接口是mmap、poll和ioctl,ioctl主要使用的ID为:
#define
BINDER_WRITE_READ _IOWR('b', 1, struct binder_write_read)
#define
BINDER_SET_IDLE_TIMEOUT _IOW('b', 3, int64_t)
#define
BINDER_SET_MAX_THREADS _IOW('b', 5, size_t)
#define
BINDER_SET_IDLE_PRIORITY _IOW('b', 6, int)
#define
BINDER_SET_CONTEXT_MGR _IOW('b', 7, int)
#define
BINDER_THREAD_EXIT _IOW('b', 8, int)
#define BINDER_VERSION
_IOWR('b', 9, struct binder_version)
BR_XXX等宏为BinderDriverReturnProtocol,表示Binder驱动返回协议。
BC_XXX等宏为BinderDriverCommandProtocol,表示Binder驱动命令协议。
binder_thread是Binder驱动程序中使用的另外一个重要的数据
结构,数据结构的定义如下所示:
struct binder_thread {
struct binder_proc *proc;
struct rb_node rb_node;
int
pid;
int looper;
struct binder_transaction
*transaction_stack;
struct list_head todo;
uint32_t
return_error;
uint32_t return_error2;
wait_queue_head_t
wait;
struct binder_stats stats;
};
binder_thread 的各个成员信息是从rb_node中得出。
BINDER_WRITE_READ是最重
要的ioctl,它使用一个数据结构binder_write_read定义读写的数据。
struct
binder_write_read {
signed long write_size;
signed
long write_consumed;
unsigned long write_buffer;
signed
long read_size;
signed long read_consumed;
unsigned
long read_buffer;
};
1.3 binder的库的部分
binder相关的文件作为Android的uitls库的一部分,这个库编译后
的名称为libutils.so,是Android系统中的
一个公共库。
主要文件的路径如下所示:
frameworks/base/include/utils/*
frameworks/base/libs/utils/*
主要的类为:
RefBase.h :
引用计数,定义类RefBase。
Parcel.h
:
为在IPC中传输的数据定义容器,定义类Parcel
IBinder.h:
Binder对象
的抽象接口, 定义类IBinder
Binder.h:
Binder对象
的基本功能, 定义类Binder和BpRefBase
BpBinder.h:
BpBinder的功能,定义类BpBinder
IInterface.h:
为
抽象经过Binder的
接口定义通用类,
定义类IInterface,类模板BnInterface,类模板BpInterface
ProcessState.h
表示进程状态的类,定义类ProcessState
IPCThreadState.h
表示IPC线程的状态,定义类IPCThreadState
各个类之间的关系如下所示:
1.2
servicemanager部分 servicemanager是一个守护进程,用于这个进程的和/dev/binder通讯,从而达到管理系统中
各个服务的作用。
可执行程序的路径:
/system/bin/servicemanager
开源版本文件的路径:
frameworks/base/cmds/servicemanager/binder.h
frameworks/base/cmds/servicemanager/binder.c
frameworks/base/cmds/servicemanager/service_manager.c
程序执行的流程:
open():打开binder驱动
mmap():映射一个128*1024字节的内存
ioctl(BINDER_SET_CONTEXT_MGR):设置上下文为mgr
进入主循环binder_loop()
ioctl(BINDER_WRITE_READ),读取
binder_parse()进入binder处理过程循环处理
binder_parse()的处理,调用返回值:
当
处理BR_TRANSACTION的时候,调用svcmgr_handler()处理增加服务、检查服务等工作。各种服务存放在一个链表(svclist)中。其中调用binder_等开头的函数,又会调用ioctl的各种命令。
处理BR_REPLY的时候,填充binder_io类型的数据结
第二部分 Binder的运作 2.1 Binder的工作机制 2.2 从应 用程序的角度看Binder 本地功能(Bn)部分做的: 在程序的实现过程中BnABC和BpABC是双继承了接口ABC。一般来说BpABC是一个实现类,这个实现类不需要在接口中体现,它实际上负责的只是通讯功能,不执行具体的功能;BnABC则是一个接口类,需
要一个真正工作的类来继承、实现它,这个类才是真正执行具体功能的类。 在客户端中,从ISeriviceManager中获得一个ABC的接口,客户端调用这个接口,实际上是在调用BpABC,而BpABC又通过Binder的IPC机制和BnABC通讯,BnABC的实现类在后面执
行。 事实上,的具体实现和客户端是两个不同的进程,如果不考虑进程间通讯的过程,从
调用者的角度,似乎客户端在直接调用另外一个进程间的函数——当然这个函数必须是接口ABC中定义的。
2.3 ISericeManager的作用 第三部分 程序中Binder的具体实现 3.1 一个利用接口的具体实现 3.2 BnABC的实现
3.3 BpABC调用的实现
Service
Manager是一个守护进程,它负责启动各个进程之间的服务,对于相关的两个需要通讯的进程,它们通过调用libutil.so库实现通讯,而真正通讯
的机制,是内核空间中的一块共享。
从应用程序的角度看Binder一共有三个方面:
Native
本地:例如BnABC,这是一个需要被继承和实现的类。
Proxy
代理:例如BpABC,这是一个在接口框架中被实现,但是在接口中没有体现的类。
客户端:例如客户端得到一个接口ABC,在调用的时候实际上
被调用的是BpABC
实现BnABC:: BnTransact()
注册服务:IServiceManager::AddService
代理部分(Bp)做的:
实现几个功能函数,调用BpABC::remote()->transact()
客户端做的:
获得ABC接口,然后调用接口(实际上调用了BpABC,继而通过IPC调用了BnABC,然后调用了具体的
功能)
ISericeManager涉及的两个文件是ISericeManager.h和ISericeManager.cpp。这两个文件基本上是
ISericeManager。ISericeManager是系统最先被启动的服务。非常值得注意的是:ISericeManager本地功能并没有使
现,它实际上由ServiceManager守护进程执行,而用户程序通过调用BpServiceManager来获得其他的服务。
在ISericeManager.h中定义了一个接口,用于得到默认的ISericeManager:
sp
这时得到的ISericeManager实际上是一个全局的ISericeManager。
PermissionController也是libutils中定义的一个有关权限控制的接口,它一共包含两
个文件:IPermissionController.h和IPermissionController.cpp这个结构在所有类的实现中都是类似的。
头文件IPermissionController.h的主要内容是定义IPermissionController接口和类
BnPermissionController:
class
IPermissionController : public IInterface
{
public:
DECLARE_META_INTERFACE(PermissionController);
virtual bool
checkPermission(const String16& permission,int32_t pid, int32_t
uid) = 0;
enum {
CHECK_PERMISSION_TRANSACTION =
IBinder::FIRST_CALL_TRANSACTION
};
};
class
BnPermissionController : public BnInterface
{
public:
virtual status_t onTransact( uint32_t code,
const Parcel& data,
Parcel* reply,
uint32_t
flags = 0);
};
IPermissionController是一个接口类,只有checkPermission()一个纯虚函数。
BnPermissionController继承了以BnPermissionController实例化模版类BnInterface。因
此,BnPermissionController,事实上BnPermissionController双继承了BBinder和
IPermissionController。
实现文件IPermissionController.cpp中,首先实现了一个BpPermissionController。
class BpPermissionController : public
BpInterface
{
public:
BpPermissionController(const sp
:
BpInterface
{
}
virtual bool checkPermission(const String16& permission, int32_t
pid, int32_t uid)
{
Parcel data, reply;
data.writeInterfaceToken(IPermissionController::
getInterfaceDescriptor());
data.writeString16(permission);
data.writeInt32(pid);
data.writeInt32(uid);
remote()->transact(CHECK_PERMISSION_TRANSACTION, data,
&reply);
if (reply.readInt32() != 0) return 0;
return reply.readInt32() != 0;
}
};
IMPLEMENT_META_INTERFACE(PermissionController,
"android.os.IPermissionController");
BpPermissionController继承了BpInterface
BnPermissionController中实现的onTransact()函数如下所示:
status_t BnPermissionController:: BnTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
switch(code) {
case CHECK_PERMISSION_TRANSACTION: {
CHECK_INTERFACE(IPermissionController, data, reply);
String16 permission = data.readString16();
int32_t
pid = data.readInt32();
int32_t uid = data.readInt32();
bool res = checkPermission(permission, pid, uid);
reply->writeInt32(0);
reply->writeInt32(res ? 1
: 0);
return NO_ERROR;
} break;
default:
return BBinder:: BnTransact(code, data,
reply, flags);
}
}
在onTransact()函数中根据枚举值判断数据使用的方式。注意,由于BnPermissionController也是继承了类
IPermissionController,但是纯虚函数checkPermission()依然没有实现。因此这个
BnPermissionController类并不能实例化,它其实也还是一个接口,需要一个实现类来继承它,那才是实现具体功能的类。
本地服务启动后将形成一个守护进程,具体的本地服务是由一个实现类继承BnABC来实现的,这个服务的名称通常
叫做ABC。
在其中,通常包含了一个instantiate()函数,这个函数一般按照如下的方式实现:
void ABC::instantiate() {
defaultServiceManager()->addService(
String16("XXX.ABC"), new ABC ());
}
按照这种方式,通过调用defaultServiceManager()函数,将增加一个名为"XXX.ABC"的服务。
在这个defaultServiceManager()函数中调用了:
ProcessState::self()->getContextObject(NULL));
IPCThreadState* ipc = IPCThreadState::self();
IPCThreadState::talkWithDriver()
在ProcessState
类建立的过程中调用open_driver()打开程序,在talkWithDriver()的执行过程中。
BpABC
调用的过程主要通过mRemote()->transact()
来传输数据,mRemote()是BpRefBase的成员,它是一个IBinder。这个调用过程如下所示:
mRemote()->transact()
Process::self()
IPCThreadState::self()->transact()
writeTransactionData()
waitForResponse()
talkWithDriver()
ioctl(fd,
BINDER_WRITE_READ, &bwr)
在IPCThreadState::executeCommand()函数中,实现传输操作。