Question:
Problem Description
平面上有n条直线,且无三线共点,问这些直线能有多少种不同交点数。
比如,如果n=2,则可能的交点数量为0(平行)或者1(不平行)。
Input
输入数据包含多个测试实例,每个测试实例占一行,每行包含一个正整数n(n<=20),n表示直线的数量.
- sub f{
- my ($m, $r, $s) = @_;
- my @f = @{$s};
- my @a;
- foreach(@f){
- my $n = ($m-$r)*$r + $_;
- push(@a, $n );
- }
- return @a;
- }
- my @init2 = (0,1);
- my @init1 = (0);
- my @init0 = (0);
- my %tmphash;
- $tmphash{2} = \@init2;
- $tmphash{1} = \@init1;
- $tmphash{0} = \@init0;
- my $i = 3;
- while(1){
- print "index is $i\n";
- my @t;
- for(my $r = 0; $r<$i; $r++){
- foreach(f($i, $r, $tmphash{$r})){
-
- push (@t, $_);
- }
- }
- @t = uniq(@t);
- $tmphash{$i} = \@t;
- for(@t){
- print "$_ ";
- }
- print "\ntrack $i finished\n";
- exit if( $i == 20);
- $i++;
- }
- sub uniq { return sort keys %{{ map { $_ => 4 } @_ }}; }
阅读(1943) | 评论(5) | 转发(1) |