Chinaunix首页 | 论坛 | 博客
  • 博客访问: 669309
  • 博文数量: 81
  • 博客积分: 1659
  • 博客等级: 上尉
  • 技术积分: 1286
  • 用 户 组: 普通用户
  • 注册时间: 2011-11-02 16:36
个人简介

专注于嵌入式和图像处理

文章分类

全部博文(81)

文章存档

2014年(1)

2013年(7)

2012年(46)

2011年(27)

分类: 虚拟化

2012-09-25 16:43:31

     Camshift算法是Continuously Adaptive Mean Shift 算法的简称。它是一个基于MeanSift的改进算法。它首次由Gary R.Bradski等人提出和应用在人脸的跟踪上,并取得了不错的效果。由于它是利用颜色的概率信息进行的跟踪,使得它的运行效率比较高。Camshift算法的过程由下面步骤组成:

(1)确定初始目标及其区域;

(2)计算出目标的色度(Hue)分量的直方图;

(3)利用直方图计算输入图像的反向投影图(后面做进一步的解释);

(4)利用MeanShift算法在反向投影图中迭代收索,直到其收敛或达到最大迭代次数。并保存零次矩;

(5)从第(4)步中获得收索窗口的中心位置和计算出新的窗口大小,以此为参数,进入到下一幀的目标跟踪。(即跳转到第(2)步);

几点说明:

1. 在输入图像进行反向投影图之前在HSV空间内做了一个阀值处理,用以滤掉一些噪声。

2. 反向投影图则是概率分布图,在反向投影图中某一像素点的值指的是这个点符合目标的概率分布的概率是多少,或者直接说其为目标图像像素点的概率是多少。计算方法为:根据像素点的像素值查目标的直方图,其对应像素值的概率是多少就做为该点在反向投影图中的值。

3. Camshit算法到底是怎样自适应调整窗口的大小的。扩大:Canshift算法在计算窗口大小前,在MeanShift算出的窗口的四个方向上增大了TOLERANCE,即高和宽都增大了2TOLERANCE(此值自己调整设置),这才有可能使得窗口能够变大。缩小:在扩大的窗口内重新计算0阶矩,1阶矩和2阶矩,利用矩的值重新计算高和宽。因此Camshif算法相当于在MeanShift的结果上,再做了一个调整,从而使得跟踪的窗口大小能够随目标的大小变化。

优点:算法的效率比较高,如果能利用多少特征做出来的统计直方图,我估计实验效果会更好。

缺点:

(1)只利用颜色统计做的跟踪,在背景有相似颜色时,会出现跟踪错误的情况。

(2)不能做多目标跟踪。

(3)由于它只在初始位置(而不是从每个像素点)开始迭代,所以有可能在初始位置错了后,收敛的位置还是原位置(即跟丢了后,可能会找不回来)。

阅读(5236) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~