文明之精神,野蛮之体魄。
全部博文(64)
分类: C/C++
2013-10-21 21:34:13
一、 二叉排序树
1. 定义
二叉排序树是一棵空树,或者
若它的左子树不为空,则左子树上所有结点的值均小于它的根结点的值。
若它的右子树不为空,则右子树上所有结点的值均大于它的根结点的值。
它的左右子树也分别是二叉排序树。
2. 二叉排序树的插入和删除操作
插入:其插入操作总是在叶结点处进行
删除:
叶结点:直接删除
非叶结点:
有一个孩子的结点:用孩子结点替代原结点。
有两个孩子的结点:用中序遍历的直接前驱替换原结点。
3. 二叉排序树实现
//BSTree.h
#ifndef _BSTREE_H_
#define _BSTREE_H_
typedef void BSTree;
typedef void BSKey;
typedef struct _tag_BSTreeNode BSTreeNode;
struct _tag_BSTreeNode
{
BSKey* key;
BSTreeNode* left;
BSTreeNode* right;
};
typedef void (BSTree_Printf)(BSTreeNode*);
typedef int (BSTree_Compare)(BSKey*,BSKey*);
BSTree* BSTree_Create();
void BSTree_Destroy(BSTree* tree);
void BSTree_Clear(BSTree* tree);
int BSTree_Insert(BSTree* tree, BSTreeNode* node,BSTree_Compare* compare);
BSTreeNode* BSTree_Delete(BSTree* tree,BSKey* key,BSTree_Compare* compare);
BSTreeNode* BSTree_Get(BSTree* tree,BSKey* key,BSTree_Compare* compare);
BSTreeNode* BSTree_Root(BSTree* tree);
int BSTree_Height(BSTree* tree);
int BSTree_Count(BSTree* tree);
int BSTree_Degree(BSTree* tree);
void BSTree_Display(BSTree* tree, BSTree_Printf* pFunc, int gap, char div);
#endif
//BSTree.c
#include
#include
#include "BSTree.h"
typedef struct _tag_BSTree TBSTree;
struct _tag_BSTree
{
int count;
BSTreeNode* root;
};
static void recursive_display(BSTreeNode* node, BSTree_Printf* pFunc, int format, int gap, char div) // O(n)
{
int i = 0;
if( (node != NULL) && (pFunc != NULL) )
{
for(i=0; i
{
printf("%c", div);
}
pFunc(node);
printf("\n");
if( (node->left != NULL) || (node->right != NULL) )
{
recursive_display(node->left, pFunc, format + gap, gap, div);
recursive_display(node->right, pFunc, format + gap, gap, div);
}
}
else
{
for(i=0; i
{
printf("%c", div);
}
printf("\n");
}
}
static int recursive_count(BSTreeNode* root) // O(n)
{
int ret = 0;
if( root != NULL )
{
ret = recursive_count(root->left) + 1 + recursive_count(root->right);
}
return ret;
}
static int recursive_height(BSTreeNode* root) // O(n)
{
int ret = 0;
if( root != NULL )
{
int lh = recursive_height(root->left);
int rh = recursive_height(root->right);
ret = ((lh > rh) ? lh : rh) + 1;
}
return ret;
}
static int recursive_degree(BSTreeNode* root) // O(n)
{
int ret = 0;
if( root != NULL )
{
if( root->left != NULL )
{
ret++;
}
if( root->right != NULL )
{
ret++;
}
if( ret == 1 )
{
int ld = recursive_degree(root->left);
int rd = recursive_degree(root->right);
if( ret < ld )
{
ret = ld;
}
if( ret < rd )
{
ret = rd;
}
}
}
return ret;
}
static int recursive_insert(BSTreeNode* root,BSTreeNode* node,BSTree_Compare* compare)
{
int ret = 1;
int r = compare(node->key,root->key);
if(r == 0){
ret = 0;
}else if(r < 0){
if(root->left != NULL){
recursive_insert(root->left,node,compare);
}else{
root->left = node;
}
}else if(r > 0){
if(root->right != NULL){
recursive_insert(root->right,node,compare);
}else{
root->right = node;
}
}
return ret;
}
static BSTreeNode* recursive_get(BSTreeNode* root,BSKey* key,BSTree_Compare* compare)
{
BSTreeNode* ret = NULL;
if(root != NULL){
int r = compare(key,root->key);
if(r == 0){
ret = root;
}else if(r < 0){
ret = recursive_get(root->left,key,compare);
}else if(r > 0){
ret = recursive_get(root->right,key,compare);
}
}
return ret;
}
static BSTreeNode* delete_node(BSTreeNode** pRoot)
{
BSTreeNode* ret = *pRoot;
if((*pRoot)->right == NULL){
*pRoot = (*pRoot)->left;
}else if((*pRoot)->left == NULL){
*pRoot = (*pRoot)->right;
}else{
BSTreeNode* g = *pRoot;
BSTreeNode* c = (*pRoot)->left;
while(c->right != NULL){
g = c;
c = c->right;
}
if(g != *pRoot){
g->right = c->left;
}
else{
g->left = c->left;
}
c->left = (*pRoot)->left;
c->right = (*pRoot)->right;
*pRoot = c;
}
return ret;
}
static BSTreeNode* recursive_delete(BSTreeNode** pRoot,BSKey* key,BSTree_Compare* compare)
{
BSTreeNode* ret = NULL;
if((pRoot != NULL) && (*pRoot != NULL))
{
int r = compare(key,(*pRoot)->key);
if(r == 0){
ret = delete_node(pRoot);
}else if(r < 0){
ret = recursive_delete(&((*pRoot)->left),key,compare);
}else if(r > 0){
ret = recursive_delete(&((*pRoot)->right),key,compare);
}
}
return ret;
}
BSTree* BSTree_Create() // O(1)
{
TBSTree* ret = (TBSTree*)malloc(sizeof(TBSTree));
if( ret != NULL )
{
ret->count = 0;
ret->root = NULL;
}
return ret;
}
void BSTree_Destroy(BSTree* tree) // O(1)
{
free(tree);
}
void BSTree_Clear(BSTree* tree) // O(1)
{
TBSTree* BSTree = (TBSTree*)tree;
if( BSTree != NULL )
{
BSTree->count = 0;
BSTree->root = NULL;
}
}
int BSTree_Insert(BSTree* tree, BSTreeNode* node,BSTree_Compare* compare) // O(n)
{
TBSTree* btree = (TBSTree*)tree;
int ret = (btree != NULL) && (node != NULL) && (compare != NULL);
if( ret )
{
node->left = NULL;
node->right = NULL;
if(btree->root == NULL){
btree->root = node;
}else{
ret = recursive_insert(btree->root,node,compare);
}
if(ret){
btree->count++;
}
}
return ret;
}
BSTreeNode* BSTree_Delete(BSTree* tree,BSKey* key,BSTree_Compare* compare) // O(n)
{
TBSTree* btree = (TBSTree*)tree;
BSTreeNode* ret = NULL;
BSTreeNode* current = NULL;
if((btree != NULL) && (key != NULL) && (compare != NULL) )
{
ret = recursive_delete(&(btree->root),key,compare);
if(ret != NULL){
btree->count--;
}
}
return ret;
}
BSTreeNode* BSTree_Get(BSTree* tree,BSKey* key,BSTree_Compare* compare) // O(n)
{
TBSTree* btree = (TBSTree*)tree;
BSTreeNode* ret = NULL;
if( (btree != NULL) && (key != NULL) && (compare != NULL))
{
ret = recursive_get(btree->root,key,compare);
}
return ret;
}
BSTreeNode* BSTree_Root(BSTree* tree) // O(1)
{
TBSTree* BSTree = (TBSTree*)tree;
BSTreeNode* ret = NULL;
if( BSTree != NULL )
{
ret = BSTree->root;
}
return ret;
}
int BSTree_Height(BSTree* tree) // O(n)
{
TBSTree* BSTree = (TBSTree*)tree;
int ret = 0;
if( BSTree != NULL )
{
ret = recursive_height(BSTree->root);
}
return ret;
}
int BSTree_Count(BSTree* tree) // O(1)
{
TBSTree* BSTree = (TBSTree*)tree;
int ret = 0;
if( BSTree != NULL )
{
ret = BSTree->count;
}
return ret;
}
int BSTree_Degree(BSTree* tree) // O(n)
{
TBSTree* BSTree = (TBSTree*)tree;
int ret = 0;
if( BSTree != NULL )
{
ret = recursive_degree(BSTree->root);
}
return ret;
}
void BSTree_Display(BSTree* tree, BSTree_Printf* pFunc, int gap, char div) // O(n)
{
TBSTree* BSTree = (TBSTree*)tree;
if( BSTree != NULL )
{
recursive_display(BSTree->root, pFunc, 0, gap, div);
}
}
//测试
#include
#include
#include "BSTree.h"
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
struct Node
{
BSTreeNode header;
char v;
};
void printf_data(BSTreeNode* node)
{
if( node != NULL )
{
printf("%c", ((struct Node*)node)->v);
}
}
int compare_key(BSKey* k1, BSKey* k2)
{
return (int)k1 - (int)k2;
}
int main(int argc, char *argv[])
{
BSTree* tree = BSTree_Create();
struct Node n1 = {{(BSKey*)1, NULL, NULL}, 'A'};
struct Node n2 = {{(BSKey*)2, NULL, NULL}, 'B'};
struct Node n3 = {{(BSKey*)3, NULL, NULL}, 'C'};
struct Node n4 = {{(BSKey*)4, NULL, NULL}, 'D'};
struct Node n5 = {{(BSKey*)5, NULL, NULL}, 'E'};
struct Node n6 = {{(BSKey*)6, NULL, NULL}, 'F'};
BSTree_Insert(tree, (BSTreeNode*)&n4, compare_key);
BSTree_Insert(tree, (BSTreeNode*)&n1, compare_key);
BSTree_Insert(tree, (BSTreeNode*)&n3, compare_key);
BSTree_Insert(tree, (BSTreeNode*)&n6, compare_key);
BSTree_Insert(tree, (BSTreeNode*)&n2, compare_key);
BSTree_Insert(tree, (BSTreeNode*)&n5, compare_key);
printf("Height: %d\n", BSTree_Height(tree));
printf("Degree: %d\n", BSTree_Degree(tree));
printf("Count: %d\n", BSTree_Count(tree));
printf("Search key 5: %c\n",((struct Node*)BSTree_Get(tree,(BSKey*)5,compare_key))->v);
printf("Full Tree: \n");
BSTree_Display(tree, printf_data, 4, '-');
BSTree_Delete(tree,(BSKey*)4,compare_key);
printf("After Delete Key 4: \n");
printf("Height: %d\n", BSTree_Height(tree));
printf("Degree: %d\n", BSTree_Degree(tree));
printf("Count: %d\n", BSTree_Count(tree));
printf("Full Tree: \n");
BSTree_Display(tree, printf_data, 4, '-');
BSTree_Clear(tree);
printf("After Clear: \n");
printf("Height: %d\n", BSTree_Height(tree));
printf("Degree: %d\n", BSTree_Degree(tree));
printf("Count: %d\n", BSTree_Count(tree));
BSTree_Display(tree, printf_data, 4, '-');
BSTree_Destroy(tree);
return 0;
}
4. 小结
二叉排序树是从二分查找的过程总结而来的一种数据结构。
二分排序树的查找效率和二分查找相同。
二叉排序树是特殊的二叉树其插入和删除操作必须保证其二叉排序的性质不变。