分类: C/C++
2013-09-17 09:23:14
原文地址:散列表 作者:tianchunlong
散列函数的构造方法
1、散列函数的选择有两条标准:简单和均匀。
简单指散列函数的计算简单快速;
均匀指对于关键字集合中的任一关键字,散列函数能以等概率将其映射到表空间的任何一个位置上。也就是说,散列函数能将子集K随机均匀地分布在表的地址集{0,1,…,m-1}上,以使冲突最小化。
2、常用散列函数
为简单起见,假定关键字是定义在自然数集合上。
(1)平方取中法
具体方法:先通过求关键字的平方值扩大相近数的差别,然后根据表长度取中间的几位数作为散列函数值。又因为一个乘积的中间几位数和乘数的每一位都相关,所以由此产生的散列地址较为均匀。
【例】将一组关键字(0100,0110,1010,1001,0111)平方后得
(0010000,0012100,1020100,1002001,0012321)
若取表长为1000,则可取中间的三位数作为散列地址集:
(100,121,201,020,123)。
相应的散列函数用C实现很简单:
int Hash(int key){ //假设key是4位整数
key*=key; key/=100; //先求平方值,后去掉末尾的两位数
return key%1000; //取中间三位数作为散列地址返回
}
(2)除余法
该方法是最为简单常用的一种方法。它是以表长m来除关键字,取其余数作为散列地址,即 h(key)=key%m
该方法的关键是选取m。选取的m应使得散列函数值尽可能与关键字的各位相关。m最好为素数。
【例】若选m是关键字的基数的幂次,则就等于是选择关键字的最后若干位数字作为地址,而与高位无关。于是高位不同而低位相同的关键字均互为同义词。
【例】若关键字是十进制整数,其基为10,则当m=100时,159,259,359,…,等均互为同义词。
(3)相乘取整法
该方法包括两个步骤:首先用关键字key乘上某个常数A(0
该方法最大的优点是选取m不再像除余法那样关键。比如,完全可选择它是2的整数次幂。虽然该方法对任何A的值都适用,但对某些值效果会更好。Knuth建议选取
该函数的C代码为:
int Hash(int key){
double d=key *A; //不妨设A和m已有定义
return (int)(m*(d-(int)d));//(int)表示强制转换后面的表达式为整数
}
(4)随机数法
选择一个随机函数,取关键字的随机函数值为它的散列地址,即
h(key)=random(key)
其中random为伪随机函数,但要保证函数值是在0到m-1之间。
处理冲突的方法
通常有两类方法处理冲突:开放定址(Open Addressing)法和拉链(Chaining)法。前者是将所有结点均存放在散列表T[0..m-1]中;后者通常是将互为同义词的结点链成一个单链表,而将此链表的头指针放在散列表T[0..m-1]中。
1、开放定址法
(1)开放地址法解决冲突的方法
用开放定址法解决冲突的做法是:当冲突发生时,使用某种探查(亦称探测)技术在散列表中形成一个探查(测)序列。沿此序列逐个单元地查找,直到找到给定的关键字,或者碰到一个开放的地址(即该地址单元为空)为止(若要插入,在探查到开放的地址,则可将待插入的新结点存人该地址单元)。查找时探查到开放的地址则表明表中无待查的关键字,即查找失败。
注意:
①用开放定址法建立散列表时,建表前须将表中所有单元(更严格地说,是指单元中存储的关键字)置空。
②空单元的表示与具体的应用相关。
【例】关键字均为非负数时,可用"-1"来表示空单元,而关键字为字符串时,空单元应是空串。
总之:应该用一个不会出现的关键字来表示空单元。
(2)开放地址法的一般形式
开放定址法的一般形式为: hi=(h(key)+di)%m 1≤i≤m-1
其中:
①h(key)为散列函数,di为增量序列,m为表长。
②h(key)是初始的探查位置,后续的探查位置依次是hl,h2,…,hm-1,即h(key),hl,h2,…,hm-1形成了一个探查序列。
③若令开放地址一般形式的i从0开始,并令d0=0,则h0=h(key),则有:
hi=(h(key)+di)%m 0≤i≤m-1
探查序列可简记为hi(0≤i≤m-1)。
(3)开放地址法堆装填因子的要求
开放定址法要求散列表的装填因子α≤l,实用中取α为0.5到0.9之间的某个值为宜。
(4)形成探测序列的方法
按照形成探查序列的方法不同,可将开放定址法区分为线性探查法、二次探查法、双重散列法等。
①线性探查法(Linear Probing)
该方法的基本思想是:
将散列表T[0..m-1]看成是一个循环向量,若初始探查的地址为d(即h(key)=d),则最长的探查序列为:
d,d+l,d+2,…,m-1,0,1,…,d-1
即:探查时从地址d开始,首先探查T[d],然后依次探查T[d+1],…,直到T[m-1],此后又循环到T[0],T[1],…,直到探查到T[d-1]为止。
探查过程终止于三种情况:
(1)若当前探查的单元为空,则表示查找失败(若是插入则将key写入其中);
(2)若当前探查的单元中含有key,则查找成功,但对于插入意味着失败;
(3)若探查到T[d-1]时仍未发现空单元也未找到key,则无论是查找还是插入均意味着失败(此时表满)。
利用开放地址法的一般形式,线性探查法的探查序列为:
hi=(h(key)+i)%m 0≤i≤m-1 //即di=i
散列表上的运算
散列表上的运算有查找、插入和删除。其中主要是查找,这是因为散列表的目的主要是用于快速查找,且插入和删除均要用到查找操作。
1、散列表类型说明:
#define NIL -1 //空结点标记依赖于关键字类型,本节假定关键字均为非负整数
#define M 997 //表长度依赖于应用,但一般应根据。确定m为一素数
typedef struct{ //散列表结点类型
KeyType key;
InfoType otherinfo; //此类依赖于应用
}NodeType;
typedef NodeType HashTable[m]; //散列表类型
2、基于开放地址法的查找算法
散列表的查找过程和建表过程相似。假设给定的值为K,根据建表时设定的散列函数h,计算出散列地址h(K),若表中该地址单元为空,则查找失败;否则将该地址中的结点与给定值K比较。若相等则查找成功,否则按建表时设定的处理冲突的方法找下一个地址。如此反复下去,直到某个地址单元为空(查找失败)或者关键字比较相等(查找成功)为止。
(1)开放地址法一般形式的函数表示
int Hash(KeyType k,int i)
{ //求在散列表T[0..m-1]中第i次探查的散列地址hi,0≤i≤m-1
//下面的h是散列函数。Increment是求增量序列的函数,它依赖于解决冲突的方法
return(h(K)+Increment(i))%m; //Increment(i)相当于是di
}
若散列函数用除余法构造,并假设使用线性探查的开放定址法处理冲突,则上述函数中的h(K)和Increment(i)可定义为:
int h(KeyType K){ //用除余法求K的散列地址
return K%m;
}
int Increment(int i){//用线性探查法求第i个增量di
return i; //若用二次探查法,则返回i*i
}