Chinaunix首页 | 论坛 | 博客
  • 博客访问: 281570
  • 博文数量: 28
  • 博客积分: 690
  • 博客等级: 上士
  • 技术积分: 358
  • 用 户 组: 普通用户
  • 注册时间: 2011-08-25 20:39
文章分类

全部博文(28)

文章存档

2012年(12)

2011年(16)

分类: C/C++

2011-11-17 17:37:06

深入理解C语言

导读:Dennis Ritchie过世了,他发明了C语言,一个影响深远并彻底改变世界的计算机语言。一门经历40多年的到今天还长盛不训的语言,今天很多语言都受到C的影响,C++JavaC#PerlPHPJavascript等等。但是,你对C了解吗?相信你看过本站的《C语言的谜题》还有《谁说C语言很简单?》。这里,我再写一篇关于深入理解C语言的文章,一方面是缅怀Dennis,另一方面是告诉大家应该如何学好一门语言。(顺便注明一下,下面的一些例子来源于这个slides)。

文章内容如下:

首先,我们先来看下面这个经典的代码:

  1. int main()    
  2.     
  3.    int a = 42;    
  4.    printf(“%d\n”, a);    
  5. }    

从这段代码里你看到了什么问题?我们都知道,这段程序里少了一个#include  还少了一个return 0;的返回语句。

不过,让我们来深入的学习一下,

这段代码在C++下无法编译,因为C++需要明确声明函数

这段代码在C的编译器下会编译通过,因为在编译期,编译器会生成一个printf的函数定义,并生成.o文件,链接时,会找到标准的链接库,所以能编译通过。

但是,你知道这段程序的退出码吗?在ANSI-C下,退出码是一些未定义的垃圾数。但在C89下,退出码是3,因为其取了printf的返回值。为什么printf函数返回3呢?因为其输出了42,\n’ 三个字符。而在C99下,其会返回0,也就是成功地运行了这段程序。你可以使用gcc的 -std=c89或是-std=c99来编译上面的程序看结果。

另外,我们还要注意main(),在C标准下,如果一个函数不要参数,应该声明成main(void),而main()其实相当于main(),也就是说其可以有任意多的参数。

我们再来看一段代码:

  1.  #include    
  2. void f(void)    
  3. {    
  4.     static int a = 3;    
  5.     static int b;    
  6.     int c;    
  7.      ++a; ++b; ++c;    
  8.      printf("a=%d\n", a);    
  9.      printf("b=%d\n", b);    
  10.      printf("c=%d\n", c);    
  11.  }    
  12.  int main(void)    
  13.  {    
  14.      f();    
  15.      f();    
  16.      f();    
  17.  }    
  18.    

这个程序会输出什么?

我相信你对a的输出相当有把握,就分别是456,因为那个静态变量。

对于c呢,你应该也比较肯定,那是一堆乱数。

但是你可能不知道b的输出会是什么?答案是123。为什么和c不一样呢?因为,如果要初始化,每次调用函数里,编译器都要初始化函数栈空间,这太费性能了。但是c的编译器会初始化静态变量为0,因为这只是在启动程序时的动作。

全局变量同样会被初始化。

说到全局变量,你知道 静态全局变量和一般全局变量的差别吗?是的,对于static 的全局变量,其对链接器不可以见,也就是说,这个变量只能在当前文件中使用。

我们再来看一个例子:

  1. #include    
  2. void foo(void)    
  3. {    
  4.     int a;    
  5.     printf("%d\n", a);    
  6. }    
  7. void bar(void)    
  8. {    
  9.     int a = 42;    
  10. }    
  11. int main(void)    
  12. {    
  13.     bar();    
  14.     foo();    
  15. }   


你知道这段代码会输出什么吗?A) 一个随机值,B) 42和 B都对(在在函数外存取局部变量的一个比喻文中的最后给过这个例子),不过,你知道为什么吗?

如果你使用一般的编译,会输出42,因为我们的编译器优化了函数的调用栈(重用了之前的栈),为的是更快,这没有什么副作用。反正你不初始化,他就是随机值,既然是随机值,什么都无所谓。

但是,如果你的编译打开了代码优化的开关,-O,这意味着,foo()函数的代码会被优化成main()里的一个inline函数,也就是说没有函数调用,就像宏定义一样。于是你会看到一个随机的垃圾数。

下面,我们再来看一个示例: 

  1. #include    
  2. int b(void) { printf(“3”); return 3; }    
  3. int c(void) { printf(“4”); return 4; }    
  4.   
  5. int main(void)    
  6. {    
  7.     int a = b() + c();    
  8.     printf(“%d\n”, a);    
  9. }   

这段程序会输出什么?,你会说是,347。但是我想告诉你,这也有可能输出,437。为什么呢? 这是因为,在C/C++中,表达的评估次序是没有标准定义的。编译器可以正着来,也可以反着来,所以,不同的编译器会有不同的输出。你知道这个特性以后,你就知道这样的程序是没有可移植性的。

我们再来看看下面的这堆代码,他们分别输出什么呢?

示例一

47 int a=41; a++; printf("%d\n", a);  

示例二

48 int a=41; a++ & printf("%d\n", a);  

示例三

49  

50 int a=41; a++ && printf("%d\n", a);  

示例四

51 int a=41; if (a++ < 42) printf("%d\n", a);  

示例五

52 int a=41; aa = a++; printf("%d\n", a);  

只有示例一,示例三,示例四输出42,而示例二和五的行为则是未定义的。关于这种未定义的东西又叫Sequence Points,因为这会让编译器不知道在一个表达式顺列上如何存取变量的值。比如a = a++a + a++,不过,在C中,这样的情况很少。

下面,再看一段代码:(假设int4字节,char1字节)

  1. struct X { int a; char b; int c; };    
  2.   
  3. printf("%d,"sizeof(struct X));    
  4.   
  5. struct Y { int a; char b; int c; char d};    
  6.   
  7. printf("%d\n"sizeof(struct Y));    

这个代码会输出什么?

a) 910

b)12, 12

c)12, 16

答案是C,我想,你一定知道字节对齐,是向4的倍数对齐。

但是,你知道为什么要字节对齐吗?还是因为性能。因为这些东西都在内存里,如果不对齐的话,我们的编译器就要向内存一个字节一个字节的取,这样一来,struct X,就需要取9次,太浪费性能了,而如果我一次取4个字节,那么我三次就搞定了。所以,这是为了性能的原因。

但是,为什么struct Y不向12 对齐,却要向16对齐,因为char d; 被加在了最后,当编译器计算一个结构体的尺寸时,是边计算,边对齐的。也就是说,编译器先看到了int,很好,4字节,然后是 char,一个字节,而后面的int又不能填上还剩的3个字节,不爽,把char b对齐成4,于是计算到d时,就是13 个字节,于是就是16啦。但是如果换一下dc的声明位置,就是12了。

另外,再提一下,上述程序的printf中的%d并不好,因为,在64位下,sizeofsize_tunsigned long,而32位下是 unsigned int,所以,C99引入了一个专门给size_t用的%zu。这点需要注意。在64位平台下,C/C++ 的编译需要注意很多事。你可以参看《64位平台C/C++开发注意事项》。

下面,我们再说说编译器的Warning,请看代码:

  1. #include    
  2.   
  3. int main(void)    
  4. {    
  5.     int a;    
  6.     printf("%d\n", a);    
  7.       
  8. }    

考虑下面两种编译代码的方式 :

cc -Wall a.c

cc -Wall -O a.c

前一种是不会编译出a未初化的警告信息的,而只有在-O的情况下,再会有未初始化的警告信息。这点就是为什么我们在makefile里的CFLAGS上总是需要-Wall和 -O

最后,我们再来看一个指针问题,你看下面的代码:

  1. #include    
  2. int main(void)    
  3. {    
  4.     int a[5];    
  5.     printf("%x\n", a);    
  6.     printf("%x\n", a+1);    
  7.     printf("%x\n", &a);    
  8.     printf("%x\n", &a+1);    
  9. }    

假如我们的a的地址是:0Xbfe2e100, 而且是32位机,那么这个程序会输出什么?

第一条printf语句应该没有问题,就是 bfe2e100

第二条printf语句你可能会以为是bfe2e101。那就错了,a+1,编译器会编译成 a+ 1*sizeof(int)int32位下是4字节,所以是加4,也就是bfe2e104

第三条printf语句可能是你最头疼的,我们怎么知道a的地址?我不知道吗?可不就是bfe2e100。那岂不成了a==&a啦?这怎么可能?自己存自己的?也许很多人会觉得指针和数组是一回事,那么你就错了。如果是 int *a,那么没有问题,a == &a。但是这是数组啊a[],所以&a其实是被编译成了 &a[0]。也是bfe2e100。

第四条printf语句就很自然了,就是bfe2e114。因为是&a + 5 * sizeof(int);

看过这么多,你可能会觉得C语言设计得真拉淡啊。不过我要告诉下面几点Dennis当初设计C语言的初衷:

1)相信程序员,不阻止程序员做他们想做的事。

2)保持语言的简洁,以及概念上的简单。

3)保证性能,就算牺牲移植性。

今天很多语言进化得很高级了,语法也越来越复杂和强大,但是C语言依然光芒四射,Dennis离世了,但是C语言的这些设计思路将永远不朽。

阅读(1701) | 评论(1) | 转发(1) |
给主人留下些什么吧!~~

gjianw2172011-12-12 18:27:50