Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1525054
  • 博文数量: 164
  • 博客积分: 2993
  • 博客等级: 少校
  • 技术积分: 1718
  • 用 户 组: 普通用户
  • 注册时间: 2011-06-24 11:42
文章分类

全部博文(164)

文章存档

2014年(1)

2013年(36)

2012年(90)

2011年(37)

分类: 网络与安全

2011-06-24 11:43:47

Sully:
    监视网络,并系统的自动维护着相应记录.
    监视目标的健康状况,并有能力使用多种方法使其恢复到一个好的状态.
    Sully 能够发现,跟踪,以及对检测到的错误进行分类.
    Sully 能够并行执行,增加了测试的速度.
    Sully 能够自动的确定测试案例中那一个单一系列引发的错误.
Sully的使用:
    数据表示: 是使用任何fuzzer的第一步.运行目标程序,将协议独立的请求和响应 ,并使用sully中的blocks表示.
    会话 : 将开发的请求连接在一起形成会话,并附加上各种可用的监视代理(socket,debugger,etc..)然后开始fuzzing
    事后分析:检查生成的数据和监控结果,重放单一测试案例.
目录结构:
    archived_fuzzies: 这是个自由形态的目录,以fuzz目标名组织在一起,用来存储已存档的fuzzer和fuzz 会话产生的数据.
    audits: 一个活动会话所记录的PCAP数据,崩溃的二进制文件,代码覆盖范围和分析的图标都应该放在此目录.
            一旦fuzz会话完成,所有的数据都要移到"Archived_fuzzies"目录中.
    docs: 文档和生成的Epydoc API references
    requests: Sully requests 库,每个目标应该拥有它自己的能被用来存储多个请求的文件.
            ___REQUESTS__.html: 包含已存储请求的类别和个别类型列表说明,按字母顺序维护.
            http.py :           各种各样的web 服务fuzzing 请求
            trend.py :          包含一个完整的fuzz 演练相关请求,在稍后的文档中讨论.
    sulley:     fuzzer 框架.除非你想扩展这个框架,否则不要轻易的改动这些文件.
        legos: 用户定义的复杂原语
            ber.py              ASN.1/ BER 原语
            dcerpc.py           微软RPC NDR 原语
            misc.py             诸如E-mail 地址和主机名等各种各样的未分类原语
            xdr.py              XDR  types 
        pgraph:    python 图形抽象库,建立sessions时使用.
        utils: 各种辅助例程
            dcerpc.py 微软RPC 帮助例程.比如绑定一个接口以及生成一个请求.
            misc.py 各种未分类的例程,比如CRC-16 以及UUID 处理例程
            scada.py SCADA特有的帮助例程,包含DNP3 块编码器
        __init__.py : 用于创建请求时定义的各种各样的别名.
        blocks.py : Blocks 和block 帮助在这里定义.
        instrumentation.py 外置仪表特征,用于并不支持debugger的监视目标
        pedrpc.py 用于定义sully 在不同的代理和主fuzzer之间通信的客户端和服务器类.
        primitives.py 各种fuzzer原语,包括静态,随机,字符串和整数定义
        sessions.py 创建并执行一个会话的功能函数.
        ***.py sully的自定义异常处理类
    unit_tests: sully 的单元测试装置
    utils: 各种独立的实用工具
        crashbin_explorer.py 命令行工具,用于扫描序列化存储于crash 二进制文件结果。
        pcap_cleaner.py 命令行工具,用于清除没有错误关联的PACP 目录


    network_monitor.py PedRpc驱动的网络监视代理
    process_monitor.py PedRpc驱动,基于调试器的目标监视代理
    unit_test.py  sulley的单元测试
    vmcontrol.py PedRpc驱动的VMWare 控制代理 。
作者:
    Pedram Amini
        

    Aaron Portnoy
        
   
安装和需求:  
    network_monitor.py : 
         CORE Pcapy,
            http://oss.coresecurity.com/projects/pcapy.html
         CORE Impacket 
            http://oss.coresecurity.com/projects/impacket.html
    process_monitor.py 
        PaiMei 
            
            
            
            
数据表示:
    初始化并命名一个请求 
        sulley使用基于数据块表示的方法来生成独立的请求,然后将这些请求放在一起生成一次会话。
        s_initialize("new request")
        现在,你可以添加原语,blocks 或者嵌套的blocks 来生成请求。每一个原语都能被单独的rendered或突变。rendering 一个原语
        将返回其关联的raw data数据格式内容。突变一个原语将变化它内部的内容。rendering 和mutating 的概念被大多数fuzzer开发者
        抽象出来的,所以不用为它担心。然而,当fuzzable 的值被穷尽时,任何可突变的原语都接受一个默认的值。
        
    静态数据 以及 随机数据:
        让我们开始一个最简单的原语,s_static(),这个原语添加一个任意长度静态不突变的值到request中,为了便利,sully 使用了
        各种不同的别名 s_dunno(),s_raw(),s_unknown()都是s_static()的别名。
            # these are all equivalent:
            s_static("pedram\x00was\x01here\x02")
            s_raw("pedram\x00was\x01here\x02")
            s_dunno("pedram\x00was\x01here\x02")
            s_unknown("pedram\x00was\x01here\x02")
        原语,block 等,都有一个可选的名字关键字参数。指定一个名字项可以直接使用request 变量request.names["name"] 存取,而
        不需要遍历block结构来找到你期望的值。
        s_binary 和s_static类似,但不相同,s_binary 接受多种形式表示的二进制数据,SPIKE 用户应该很熟悉它的使用,
            # yeah, it can handle all these formats.
            s_binary("0xde 0xad be ef \xca fe 00 01 02 0xba0xdd f0 0d", name="complex")
        大多数sulley原语又fuzz 启发式驱动,因此它们突变的数目是有限的,但是s_random除外,它被利用来生成各种长度的随机数值,该原语必须携带两个
        参数'min_length','max_length',用来说明在每一次迭代生成随机数值得最大,最小长度值,该原语,还接受如下关键字参数.
            num_mutations: (integer, default=25) 在恢复到默认值前的突变次数 
            fuzzable: (boolean, default=True)  开启和关闭该原语的可突变性
            name: (string, default=None) 通过名字,sulley可以对该原语直接存取.
            number_mutations 关键字参数指定在被认为该原语耗尽时应该突变该原语多少次。如果要生成固定长度的随机数,指定min_length 和max_length
            相等即可           

    整数
    
        二进制和anscii协议中可能会包含各种大小的整数域,如http协议的内容长度域,和所有的fuzz框架一样,我们在这里也需要来产生这些数据:
            1 byte: s_byte(), s_char() 
            2 bytes: s_word(), s_short() 
            4 bytes: s_dword(), s_long(), s_int() 
            8 bytes: s_qword(), s_double() 
        每一个整数类型至少要接受一个单一的参数,即默认整数值,此外,下面这些可选关键字参数可被指定.
            endian: (character, default='<') bit 位序 指定 '<' 为小端,'>'为大端
            format: (string, default="binary")输出格式, "binary" 或 "ascii", 控制者原语表示的整数格式, 例如,值100 ascii格式为 ‘100’ 而  "\x64" 是二进制格式
            signed: (boolean, default=False) 使得大小为有符号数,还是无符号数,仅当format="ascii"时适用
            full_range: (boolean, default=False) 使该原语突变所有的可能值
            fuzzable: (boolean, default=True) 开启和关闭该原语的可突变性 
            name: (string, default=None) 可以通过在request中指定该名称来直接存储该原语的值
            
        full_range 参数是上面所有参数中最值得关注的。考虑一下,当你fuzz一个DWORD类型的值时,一共有4294967295 种可能值,以每秒10个测试案例的速度
        你需要13年才能fuzz完这个原语,通过定义一些smart数值集来减小原有穷举空间,包括在0边界处,+,- 10,以及最大值除2,4,6,8,10.16,32等得到
        的集合,而穷尽减小的空间值(141 测试案例) 仅需要10几秒。

        
        
        
    字符串和分隔符 
    字符串能在协议中的使用非常广泛,邮件地址,主机名,用户名,密码等等,你不用怀疑,字符串的应用贯穿在整个fuzzing的过程中,s_string 原语
    负责这些域,这个原语只需要带一个默认参数值为必选参数,下面这些附加参数也可被指定。
        size: (integer, default=-1) 字符串的静态大小,对于动态大小,指定该值为-1 
        padding: (character, default='\x00') 如果明确大小被指定,而产生的大小小于指定值, 使用这个值来填充直到满足条件为止。 
        encoding: (string, default="ascii") 字符串使用的编码,有效的选项包含无论在python中任何地方都能被接受的s.encode,对于微软unicode字符串,指定 utf_16_le 
        fuzzable: (boolean, default=True) 开启和关闭该原语的可突变性 
        name: (string, default=None) 可以通过在request中指定该名称来直接存储该原语的值
        
    字符串通常被分割符划分为几个子域,例如,空格被用作http协议请求的分割符,"GET /index.html HTTP/1.0"前面的/ 和 . 同样作为该请求的分割符。
    但你定义协议时,请确保使用s_delim()原语代替分割符,正如其它原语一样,必须指定一个默认值作为它的第一个参数,同样,和其它参数一致,
    s_delim()同样接受可选的fuzzable 和name 参数,定界符的突变包括,重复,替代,排除。
    作为一个完整的例子,fuzzing http 标签时使用如下系列原语:
        # fuzzes the string: 
        s_delim("<")
        s_string("BODY")
        s_delim(" ")
        s_string("bgcolor")
        s_delim("=")
        s_delim("\"")
        s_string("black")
        s_delim("\"")
        s_delim(">")
    
    
    Blocks:
    
    必须精通的原语,让我们来看下,如何阻止并嵌入一个块,新的块使用s_block_start()定义,使用s_bolck_end()关闭,每个块必须给定
    一个名称,作为s_block_start()的第一个参数,这个例程同样可以指定如下可选参数:
        group: (string, default=None) 和该块关联的组的名称
        encoder: (function pointer, default=None) 函数指针,在reader 该block数据返回之前,提供一次处理该block数据的机会
        dep: (string, default=None) 可选的参数,用来指定该block依赖的值
        dep_value: (mixed, default=None) 如使该block的值 能被readered,该值必须在dep域中被包含
        dep_values: (list of mixed types, default=[]) 为了该block的值能被readerd,dep可能包含的值列表. 
        dep_compare (string, default="==") 应用于依赖的比较方法,有效的可选操作为"==", "!=", ">", ">=", "<" and "<=". 

    Group ,encoding,以及依赖性是大多数fuzz框架没有的特性,我们将在下面论述它们。
    
    
    组
    group允许你连接一个块到指定的group原语,和一个组关联的block必须为每一个组中的值循环穷尽该block的所有空间,例如,在表示一个有效的opcode列表或一些有
    相同参数的行为时,组原语是非常有用的,s_group定义一个组,并接受两个必须的参数,第一个参数指定组名称,第二个参数指定一个需要迭代的原始值列表。
    例如,下面的请求完成web ,服务器的fuzz:
        # import all of Sulley's functionality.
        from sulley import *

        # this request is for fuzzing: {GET,HEAD,POST,TRACE} /index.html HTTP/1.1

        # define a new block named "HTTP BASIC".
        s_initialize("HTTP BASIC")

        # define a group primitive listing the various HTTP verbs we wish to fuzz.
        s_group("verbs", values=["GET", "HEAD", "POST", "TRACE"])

        # define a new block named "body" and associate with the above group.
        if s_block_start("body", group="verbs"):
            # break the remainder of the HTTP request into individual primitives.
            s_delim(" ")
            s_delim("/")
            s_string("index.html")
            s_delim(" ")
            s_string("HTTP")
            s_delim("/")
            s_string("1")
            s_delim(".")
            s_string("1")
            # end the request with the mandatory static sequence.
            s_static("\r\n\r\n")
        # close the open block, the name argument is optional here.
        s_block_end("body")
        
        该脚本由sulley组件的引入开始,接下来,初始化并一个请求,并为该请求命名为“HTTP BASIC”,该名称稍后被引用,来对request进行直接存取,
        下一步,一个组被定义,名称为“verbs”,其可能的字符串值为"GET", "HEAD", "POST", "TRACE",一个名为body的block被定义,并使用group参数连接到
        先前定义的group原语,注意,s_block_start总是返回True,这让你可以通过使用if语句来组织block的结构,让程序更具有可读性,注意,
        s_block_end()的名称参数是可选的,一系列的基本原语和数据原语被限定在body 块中,当定义的请求被载入到一个sulley的会话中时,fuzzer将为
        每一个定义在组中的值,生成并传输body块中的所有可能值。
        
    Encoders
    编码者是一个简单但非常有效的block修改器,在block将readered的内容返回并传输到物理线路之前,一个函数能被指定并附加到该block上来对该数据进行修改。
    下面是一个xor加密器:
        def trend_xor_encode (str):
        key = 0xA8534344
        ret = ""

        # pad to 4 byte boundary.
        pad = 4 - (len(str) % 4)

        if pad == 4:
            pad = 0

        str += "\x00" * pad

        while str:
            dword  = struct.unpack("            str    = str[4:]
            dword ^= key
            ret   += struct.pack("            key    = dword

        return ret
    encoder 直带一个单一参数,即,传入被编码的数据,返回编码后的数据,通过定义一个编码器并附加到一个可fuzzable的block上,允许fuzz的开发者
    可以继续他的开发而不用担心这个小障碍。
    
    依赖性
    Dependencies 允许你在读取一个block的值时应用一个依赖条件 ,可在块的初始化时连接一个原语来完成依赖性,该原语将被使用dep关键字的block依赖,当sulley读取
    依赖的块时,它将检查说连接的原始值,并以此指导自己的行为。只有一个依赖的值时,可以通过指定dep_value 关键字参数,如果有多个依赖的值,依赖的值列表能被
    dep_values关键字参数指定。最后,实际的条件比较关系可以通过dep_compare关键字修改。考虑如下一种情景,依赖于一个整数的值,但不同的数据被期望。
        
        s_short("opcode", full_range=True)

        # opcode 10 expects an authentication sequence.
        if s_block_start("auth", dep="opcode", dep_value=10):
            s_string("USER")
            s_delim(" ")
            s_string("pedram")
            s_static("\r\n")
            s_string("PASS")
            s_delim(" ")
            s_delim("fuzzywuzzy")
        s_block_end()

        # opcodes 15 and 16 expect a single string hostname.
        if s_block_start("hostname", dep="opcode", dep_values=[15, 16]):
            s_string("pedram.openrce.org")
        s_block_end()

        # the rest of the opcodes take a string prefixed with two underscores.
        if s_block_start("something", dep="opcode", dep_values=[10, 15, 16], dep_compare="!="):
            s_static("__")
            s_string("some string")
        s_block_end()
    
    块的依赖性可以通过不同的数量和方式连接在一起,而得到强有力的组合。
    
    block helps:
    在使用sulley生成数据时,一个重要的方面就是熟悉block helper的利用,包括,大小,校验和,和重复。
    
    Sizers
    
    SPIKE使用者将会非常熟悉s_sizer()或者s_size()块助手,辅助函数使用block的名称作为它的第一个参数来确定该block的大小,并可接受如下参数:
        length: (integer, default=4) 大小域的长度 
        endian: (character, default='<') bit 位序 指定 '<' 为小端,'>'为大端
        format: (string, default="binary") 输出格式, "binary" 或"ascii", 控制着整数原语读入的格式 
        inclusive: (boolean, default=False) sizer是否应该计算它自身的长度? 
        signed: (boolean, default=False) 使sizer成为有符号或无符号数, 仅当格式为ascii时适用
        fuzzable: (boolean, default=False) 该原语可fuzzing 性的开关
        name: (string, default=None) 可以通过在request中指定该名称来直接存储该原语的值

    sizer是数据生成中重要的组件,允许我们表示诸如XDR符号,ASN.1等复杂的协议,但读取sizer的时候,sulley将动态计算关联块的长度,
    默认情况下,sulley将不会fuzz Sizer域,在许多情况下,可能会有这种需求,如果遇到,enable fuzzable标志即可。
    
    Checksums
    和Sizers相似,s_checksum() 助手使用block的名称作为其第一个参数来确定该block的checksum,如下的可选参数可被指定
      
        algorithm: (string or function pointer, default="crc32"). 应用于目标块的checksum的算法(crc32, adler32, md5, sha1) 
        endian: (character, default='<') bit 位序 指定 '<' 为小端,'>'为大端
        length: (integer, default=0) 校验和的长度,指定为0则自动计算
        name: (string, default=None) 可以通过在request中指定该名称来直接存储该原语的值
    
    algorithm 参数能被指定为"crc32", "adler32", "md5" or "sha1"其中之一,或者,你可以指定一个函数指针,作为你自己定制的算法。
    
    Repeaters
    s_repeat()或者s_repeater()助手,被用于重复一个块为一个变量所代表的次数。这对于测试需要解析一个表为多个元素的溢出案例是非常有用的。
    这个辅助程序需要携带三个必须参数,被重复的block的名称,最小重复次数和最大重复次数,此外,下面的可选参数可使用:
            
            
            
        step: (integer, default=1) 最小,最大重复次数的步长
        fuzzable: (boolean, default=False) 该原语可fuzzing 性的开关
        name: (string, default=None) 可以通过在request中指定该名称来直接存储该原语的值
    考虑下下面这个例子:
        它连接了三个我们所介绍的辅助程序,我们fuzz的协议的一部分是一个包含字符串的表格。
        每一个表格中的项由两个字节的字符串类型域,两个字节的长度域,一个字符串域,最后以一个需要接受整个字符串域的crc-32校验和结尾
        我们并不知道对这个有效的类型域是什么类型,所有我们使用随机数据来对其进行fuzz,
        使用suelly定义的这部分协议如下:
            # table entry: [type][len][string][checksum]
            if s_block_start("table entry"):
                # we don't know what the valid types are, so we'll fill this in with random data.
                s_random("\x00\x00", 2, 2)
                
                # next, we insert a sizer of length 2 for the string field to follow.
                s_size("string field", length=2)
                
                # block helpers only apply to blocks, so encapsulate the string primitive in one.
                if s_block_start("string field"):
                    # the default string will simply be a short sequence of C's.
                    s_string("C" * 10)
                s_block_end()
                
                # append the CRC-32 checksum of the string to the table entry.
                s_checksum("string field")
            s_block_end()

            # repeat the table entry from 100 to 1,000 reps stepping 50 elements on each iteration.
            s_repeat("table entry", min_reps=100, max_reps=1000, step=50)

    这个sulley脚本不仅可以发现解析表项时的错误,而且可能发现在处理超长表时的错误。
    
    Legos
    
    sulley使用legos来代表用户定义的组件,诸如,e_mail地址,主机名,以及用于微软RPC,XDR,ASN.1等协议原语,在ASN.1中 /BER字符串被描述为一个系列[0x04][0x84][dword length][string
    ,在fuzzing 基于ASN.1的协议时,在每一个字符串前面都包括一个长度和类型的前缀,将变得相当难处理,作为代替,我们定义该lege来引用它。
        
        s_lego("ber_string", "anonymous")
    除了可选择的可选关键字参数外,每一个lego都有相似的格式,来指定一个独立的lego。作为一个例子,考虑到tag lego的定义,当fuzz xml-ish协议时
    是非常有用的:
        class tag (blocks.block):
        def __init__ (self, name, request, value, options={}):
            blocks.block.__init__(self, name, request, None, None, None, None)

            self.value   = value
            self.options = options

            if not self.value:
                raise ***.error("MISSING LEGO.tag DEFAULT VALUE")

            # 
            # [delim][string][delim]

            self.push(primitives.delim("<"))
            self.push(primitives.string(self.value))
            self.push(primitives.delim(">"))
        这个lego例子接受一个期望的tag作为字符串,并且将其压缩在适当的分割符内,如此做扩展了blocks类,通过self.push将合适的分割符和字符
        串添加到block的栈中。
        
        这里是另外一个为了生成ANS.1/DER 整数的简单lego,最小的共同点是代表的整数都是4字节整数,并有如下的形式,
        [0x02][0x04][dword] 0x02 指定整数的类型,0x04指定整数的长度是4字节长,doword代表我们实际传入的值,如下是
        在sulley中的定义:
        class integer (blocks.block):
            def __init__ (self, name, request, value, options={}):
                blocks.block.__init__(self, name, request, None, None, None, None)

                self.value   = value
                self.options = options

                if not self.value:
                    raise ***.error("MISSING LEGO.ber_integer DEFAULT VALUE")

                self.push(primitives.dword(self.value, endian=">"))


            def render (self):
                # let the parent do the initial render.
                blocks.block.render(self)

                self.rendered = "\x02\x04" + self.rendered
                return self.rendered


        
        
    Sessions
    一旦你定义了许多请求,就是时候将它们连接在一起形成一个会话了 。sulley 比其它好的fuzz框架最大的优势在于它对协议模糊测试的深度.
    它将各个请求连接在一起形成图,


            from sulley import *
                                                                                  
            s_static("helo")                                                     

            s_initialize("ehlo")
            s_static("ehlo")

            s_initialize("mail from")
            s_static("mail from")

            s_initialize("rcpt to")
            s_static("rcpt to")

            s_initialize("data")
            s_static("data")

            sess = sessions.session()
            sess.connect(s_get("helo"))
            sess.connect(s_get("ehlo"))
            sess.connect(s_get("helo"),      s_get("mail from"))
            sess.connect(s_get("ehlo"),      s_get("mail from"))
            sess.connect(s_get("mail from"), s_get("rcpt to"))
            sess.connect(s_get("rcpt to"),   s_get("data"))

            fh = open("session_test.udg", "w+")
            fh.write(sess.render_graph_udraw())
            fh.close()

        在fuzz测试时,sulley沿着图形结构,从根节点开始fuzz测试每一个组件,在这个例子中,它从helo请求开始fuzzing,一旦完成,sulley将fuzz
        mail from 请求,它在每一个测试案例前添加一个有效的helo请求,接下来,sulley将对rpct to 进行fuzzing,通过在每一个测试案例前添加一个
        有效的helo和mail from 请求,这个过程一直到data请求完成后又从ehlo重新开始,这种将协议拆分为多个独立的请求,并fuzz了协议图的所有可能路径
        的能力是非常强大的。
        
        当实例化一个sesssion时,下面的可选参数可能被使用:
            session_filename: (string, default=None) 用于存储系列化数据的文件名 指定一个文件名允许你停止以及恢复一个fuzzer的执行。
            skip: (integer, default=0). 需要跳过的测试案例数 
            sleep_time: (float, default=1.0) 在发送测试案例时睡眠的时间值
            log_level: (integer, default=2) 设置日子级别,级别越高,得到的日志信息就越多 
            proto: (string, default="tcp") 用于通信的协议 
            timeout: (float, default=5.0)设置等待 send /recv 返回之前的超时时间.
            
        另外一个要介绍的sulley的高级特性是可以在协议图结构的每一边注册一个回调函数,这允许我们在两个节点间注册一个回调函数,来实现诸如
        询问回答系统的功能,回调函数的原型如下:
            def callback(node, edge, last_recv, sock)

        node是将要被发送到node,edge是沿着当前路径到node的最后边,last_recv 包含从最后一次sock传输返回的数据,sock是一个可用的sock,
        回调函数在如下的情景中是非常有用的,例如,下一个包的大小由上一个包指定,如果你需要动态填入目标IP地址,注册一个callback从sock.
        getpeername()函数获取,边的回调函数可以在session.connect函数中又参数关键字 callback指定。
        
        
    Target 和 Agents
    
    下一步是定义目标,为它们添加代理并将其加入到会话中,下面这个例子初始化一个运行在vmware 中的目标,并为其连接了3个代理:
        target = sessions.target("10.0.0.1", 5168)

        target.netmon    = pedrpc.client("10.0.0.1",  26001)
        target.procmon   = pedrpc.client("10.0.0.1",  26002)
        target.vmcontrol = pedrpc.client("127.0.0.1", 26003)

        target.procmon_options = \
        {
            "proc_name"      : "SpntSvc.exe",
            "stop_commands"  : ['net stop "trend serverprotect"'],
            "start_commands" : ['net start "trend serverprotect"'],
        }

        sess.add_target(target)
        sess.fuzz()
    实例化目标绑定在主机 10.0.0.1 ,端口 为 5168 .一个网络监控代理运行在目标系统上,监听的默认端口为26001,网络监控代理将记录所有的socket通信为独立的pcap包,
   ,使用测试案例号作为PCap文件标号。进程监控代理同样运行在目标系统上,监听默认端口26002.进程监控代理需要指定附加的进程名作为其参数,以及停止和打开该进程的
   命令行语句。最后,VMware 代理运行在本地引擎,监听26003,目标被添加到session并开始fuzz测试,sulley有能力fuzzing多个目标,每一个目标都要有唯一的代理,
   这可以将总测试空间划分在多个不同的目标上来为你节省时间。
阅读(5632) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~