全部博文(842)
分类: LINUX
2012-03-04 17:27:31
1.posix有名信号灯函数
函数sem_open创建一个新的有名信号灯或打开一个已存在的有名信号灯。有名信号灯总是既可用于线程间的同步,又可以用于进程间的同步。
1.
名称:: | sem_open |
功能: | 创建并初始化有名信号灯 |
头文件: | #include |
函数原形: | sem_t *sem_open(const char *name,int oflag,/*mode_t mode,unsigned int value*/); |
参数: | name 信号灯的外部名字 oflag 选择创建或打开一个现有的信号灯 mode 权限位 value 信号灯初始值 |
返回值: | 成功时返回指向信号灯的指针,出错时为SEM_FAILED |
oflag参数可以是0、O_CREAT(创建一个信号灯)或O_CREAT|O_EXCL(如果没有指定的信号灯就创建),如果指定了O_CREAT,那么第三个和第四个参数是需要的;其中mode参数指定权限位,value参数指定信号灯的初始值,通常用来指定共享资源的书面。该初始不能超过SEM_VALUE_MAX,这个常值必须低于为32767。二值信号灯的初始值通常为1,计数信号灯的初始值则往往大于1。
如果指定了O_CREAT(而没有指定O_EXCL),那么只有所需的信号灯尚未存在时才初始化它。所需信号灯已存在条件下指定O_CREAT不是一个错误。该标志的意思仅仅是“如果所需信号灯尚未存在,那就创建并初始化它”。但是所需信号灯等已存在条件下指定O_CREAT|O_EXCL却是一个错误。
sem_open返回指向sem_t信号灯的指针,该结构里记录着当前共享资源的数目。
/*semopen.c*/ #include #include #include #include #include
int main(int argc,char **argv) { sem_t *sem;
if(argc!=2) { printf(“please input a file name!\n”); exit(1); } sem=sem_open(argv[1],O_CREAT,0644,1); exit(0); } |
#gcc –lpthread –o semopen semopen.c
#./semopen
2.
名称:: | sem_close |
功能: | 关闭有名信号灯 |
头文件: | #include |
函数原形: | int sem_close(sem_t *sem); |
参数: | sem 指向信号灯的指针 |
返回值: | 若成功则返回0,否则返回-1。 |
一个进程终止时,内核还对其上仍然打开着的所有有名信号灯自动执行这样的信号灯关闭操作。不论该进程是自愿终止的还是非自愿终止的,这种自动关闭都会发生。
但应注意的是关闭一个信号灯并没有将它从系统中删除。这就是说,Posix有名信号灯至少是随内核持续的:即使当前没有进程打开着某个信号灯,它的值仍然保持。
3.
名称:: | sem_unlink |
功能: | 从系统中删除信号灯 |
头文件: | #include |
函数原形: | int sem_unlink(count char *name); |
参数: | name 信号灯的外部名字 |
返回值: | 若成功则返回0,否则返回-1。 |
有名信号灯使用sem_unlink从系统中删除。
每个信号灯有一个引用计数器记录当前的打开次数,sem_unlink必须等待这个数为0时才能把name所指的信号灯从文件系统中删除。也就是要等待最后一个sem_close发生。
/*semunlink.c*/ #include #include #include #include #include
int main(int argc,char **argv) { sem_t *sem; int val; if(argc!=2) { printf(“please input a file name!\n”); exit(1); } if((sem_unlink(argv[1]))!=0) perror(“sem_unlink”); else printf(“success”); exit(0); } |
4.
名称:: | sem_getvalue |
功能: | 测试信号灯 |
头文件: | #include |
函数原形: | int sem_getvalue(sem_t *sem,int *valp); |
参数: | sem 指向信号灯的指针 |
返回值: | 若成功则返回0,否则返回-1。 |
sem_getvalue在由valp指向的正数中返回所指定信号灯的当前值。如果该信号灯当前已上锁,那么返回值或为0,或为某个负数,其绝对值就是等待该信号灯解锁的线程数。
/*semgetvalue.c*/ #include #include #include #include #include
int main(int argc,char **argv) { sem_t *sem; int val;
if(argc!=2) { printf(“please input a file name!\n”); exit(1); } sem=sem_open(argv[1],0); sem_getvalue(sem,&val); printf(“getvalue:value=%d\n”,val); exit(0); } |
5.
名称:: | sem_wait/sem_trywait |
功能: | 等待共享资源 |
头文件: | #include |
函数原形: | int sem_wait(sem_t *sem); int sem_trywait(sem_t *sem); |
参数: | sem 指向信号灯的指针 |
返回值: | 若成功则返回0,否则返回-1。 |
我们可以用sem_wait来申请共享资源,sem_wait函数可以测试所指定信号灯的值,如果该值大于0,那就将它减1并立即返回。我们就可以使用申请来的共享资源了。如果该值等于0,调用线程就被进入睡眠状态,直到该值变为大于0,这时再将它减1,函数随后返回。sem_wait操作必须是原子的。sem_wait和sem_trywait的差别是:当所指定信号灯的值已经是0时,后者并不将调用线程投入睡眠。相反,它返回一个EAGAIN错误。
下面的程序我们先不去运行,稍后再运行。
/*semwait.c*/ #include #include #include #include #include
int main(int argc,char **argv) { sem_t *sem; int val;
if(argc!=2) { printf(“please input a file name!\n”); exit(1); } sem=sem_open(argv[1],0); sem_wait(sem); sem_getvalue(sem,&val); printf(“pid %ld has semaphore,value=%d\n”,(long)getpid(),val); pause(); exit(0); } |
6.
名称:: | sem_post |
功能: | 挂出共享资源 |
头文件: | #include |
函数原形: | int sem_post(sem_t *sem); int sem_getvalue(sem_t *sem,int *valp); |
参数: | sem 指向信号灯的指针 |
返回值: | 若成功则返回0,否则返回-1。 |
当一个线程使用完某个信号灯时,它应该调用sem_post来告诉系统申请的资源已经用完。本函数和sem_wait函数的功能正好相反,它把所指定的信号灯的值加1,然后唤醒正在等待该信号灯值变为正数的任意线程。
下面的程序我们先不去运行,稍后再运行。
/*sempost.c*/ #include #include #include #include #include
int main(int argc,char **argv) { sem_t *sem; int val;
if(argc!=2) { printf(“please input a file name!\n”); exit(1); } sem=sem_open(argv[1],0); sem_post(sem); sem_getvalue(sem,&val); printf(“value=%d\n”, val); exit(0); } |
2.关于posix有名信号灯使用的几点注意
我们要注意以下几点:
1.Posix有名信号灯的值是随内核持续的。也就是说,一个进程创建了一个信号灯,这个进程结束后,这个信号灯还存在,并且信号灯的值也不会改变。
下面我们利用上面的几个程序来证明这点
#./semopen test
#./semgetvalue test
value=1 信号的值仍然是1
2。当持有某个信号灯锁的进程没有释放它就终止时,内核并不给该信号灯解锁。
#./semopen test
#./semwait test&
pid 1834 has semaphore,value=0
#./semgetvalue test
value=0 信号量的值变为0了
3.posix有名信号灯应用于多线程
#include #include #include #include #include
void *thread_function(void *arg); /*线程入口函数*/ void print(pid_t); /*共享资源函数*/ sem_t *sem; /*定义Posix有名信号灯*/ int val; /*定义信号灯当前值*/
int main(int argc,char *argv[]) { int n=0;
if(argc!=2) { printf(“please input a file name!\n”); exit(1); } sem=sem_open(argv[1],O_CREAT,0644,3); /*打开一个信号灯*/
while(n++<5) /*循环创建5个子线程,使它们同步运行*/ { if((pthread_create(&a_thread,NULL,thread_function,NULL))!=0) { perror(“Thread creation failed”); exit(1); } } pthread_join(a_thread,NULL); sem_close(bin_sem); sem_unlink(argv[1]); }
void *thread_function(void *arg) { sem_wait(sem); /*申请信号灯*/ print(); /*调用共享代码段*/ sleep(1); sem_post(sem); /*释放信号灯*/ printf(“I’m finished,my tid is %d\n”,pthread_self()); }
void print() { printf(“I get it,my tid is %d\n”,pthread_self()); sem_getvalue(sem,&val); printf(“Now the value have %d\n”,val); }
|
程序用循环的方法建立5个线程,然后让它们调用同一个线程处理函数thread_function,在函数里我们利用信号量来限制访问共享资源的线程数。共享资源我们用print函数来代表,在真正编程中它有可以是一个终端设备(如打印机)或是一段有实际意义的代码。
运行结果为:
#gcc –lpthread –o 8_1 8_1.c
#./8_1 test
I get it,my tid is 1082330304
Now the value have 2
Iget it,my pid is 1894
Now the value have 1
Iget it,my pid is 1895
Now the value have 0
I’m finished,my pid is 1893
I’m finished,my pid is 1894
I’m finished,my pid is 1895
I get it,my pid is 1896
Now the value have 2
I get it,mypid is 1897
Now the value have 1
I’m finished,my pid is 1896
I’m finished,my pid is 1897