浅析usb转serial串口设备在linux内核中枚举创建及生成tty设备的全过程
1.usb_register和usb_register_driver用来注册一个interface接口驱动for_devices = 0;
2.usb_register_device_driver用来注册一个usb设备驱动,for_devices = 1;用来解析设备描述符,
进而生成配置描述符下的功能接口,尝试匹配usb_register_driver注册的接口驱动来驱动该usb设备的功能接口.[luther.gliethttp]
在整个kernel中,只有usb_init即[subsys_initcall(usb_init)]一处调用了usb_register_device_driver函数,
usb_register_device_driver(&usb_generic_driver, THIS_MODULE);所以所有通过hub_thread检测到插入的usb设备也都将调用到
generic_probe设备枚举函数,我们这里需要提到一些usb通信方面的知识,以便我们能够透彻理解kernel中usb代码,
一个插入到HUB上的usb设备使用4种描述符来描述自己,
(1) 设备描述符
(2) 配置描述符
(3) 接口描述符
(4) 端点描述符
一个usb设备只能有1个设备描述符,1个设备描述符可以有多个配置描述符,然后每个配置描述符下面又可以有多个接口描述符用来
具体描述一个设备在该配置下的一个或多个独立功能,每个接口下面又由端点描述符来具体声明该功能接口在usb物理通信中使用哪几个
端点管道来执行usb物理信道的实际收发工作[luther.gliethttp].
所以一个usb设备的具体功能是由接口描述符来描述的,因此我们开发的usb driver也就几乎99.9%都在使用usb_register函数来实现一个
接口对应的驱动,进而驱动usb设备上该接口对应的具体功能,比如UMS.[luther.gliethttp]
当kernel使用generic_probe()函数完成插入到HUB上的usb设备的合法检验之后,将调用设置配置描述符操作usb_set_configuration,
生成该配置描述符下面若干个接口描述符对应的dev设备,
usb_set_configuration
==>device_add(&intf->dev);
// 这样该接口dev将扫描usb_bus_type总线上的所有drivers驱动,kernel尝试为该接口dev找到驱动它的driver.[luther.gliethttp]
如下几个函数中都会调用到usb_set_configuration
usb_authorize_device // 以sysfs中attr性质存在,这样用户空间的程序就可以通过attr属性文件来强制控制接口驱动的关联.
usb_deauthorize_device
driver_set_config_work
proc_setconfig
set_bConfigurationValue
generic_disconnect
generic_probe
usb设备的检测工作是通过内核线程hub_thread完成的.
usb_hub_init==>khubd_task = kthread_run(hub_thread, NULL, "khubd"); // 创建内核线程hub_thread,监控hub上usb设备的插拔情况
hub_thread
==>hub_events
==>hub_port_connect_change==>udev =usb_alloc_dev // 添加usb设备
==>hub_port_connect_change==>usb_new_device(udev)==>device_add(&udev->dev); // 将检测到的usb设备添加到usb_bus_type总线上,
// 该dev的type值为usb_device_type,最后函数执行device_add==>bus_add_device实现具体添加操作[luther.gliethttp]
// bus_add_device将调用上面usb_register_device_driver(&usb_generic_driver, THIS_MODULE);注册的唯一一个设备描述符解析驱动
// usb_generic_driver==>generic_probe来完成接口设备生成和相应的接口设备驱动关联动作[luther.gliethttp].
usb_add_hcd==>usb_alloc_dev // 添加HCD
usb_alloc_dev
==>dev->dev.bus = &usb_bus_type;设置dev为usb总线上的设备
==>dev->dev.type = &usb_device_type;设置该dev为usb设备而非接口
driver_register或者device_register
调用driver_attach或者bus_attach_device==>device_attach
来为设备尝试匹配驱动或者为驱动尝试添加设备,不论是哪一种情况,都将
执行到:driver_probe_device函数.
int driver_probe_device(struct device_driver *drv, struct device *dev)
{
int ret = 0;
if (!device_is_registered(dev)) // 1.设备已经完成了注册到bus总线工作
return -ENODEV;
if (drv->bus->match && !drv->bus->match(dev, drv)) // 2.执行bus提供的match操作usb_device_match
goto done;
pr_debug("bus: '%s': %s: matched device %s with driver %s\n",
drv->bus->name, __FUNCTION__, dev->bus_id, drv->name);
ret = really_probe(dev, drv); // bus的match通过检验,这里做进一步的probe检验,
// 如果bus提供了probe,那么执行bus->probe(dev);
// 否则执行driver提供的probe函数drv->probe(dev);
done:
return ret;
}
usb_register(&mct_u232_driver);
==>usb_register_driver
new_driver->drvwrap.for_devices = 0; // 仅仅用来驱动interface接口,所以上面hub_port_connect_change由usb_alloc_dev生成的usb设备不会调用该usb接口驱动
new_driver->drvwrap.driver.bus = &usb_bus_type;
new_driver->drvwrap.driver.probe = usb_probe_interface; // 当检测到usb设备插入后,将调用usb_probe_interface进行细致处理
// 提供为device_driver提供probe处理函数,因为bus总线usb_bus_type不提供probe操作[luther.gliethttp]
==>driver_register(&new_driver->drvwrap.driver); // 将驱动添加到usb bus总线管理的driver驱动链表上
usb_device_match==>is_usb_device
static inline int is_usb_device(const struct device *dev)
{
return dev->type == &usb_device_type;
}
开看看驱动hub_thread==>usb_alloc_dev创建的插入到HUB上的usb设备的probe函数generic_probe.[luther.gliethttp]
subsys_initcall(usb_init);
==>usb_init
==>usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
struct usb_device_driver usb_generic_driver = {
.name = "usb",
.probe = generic_probe,
.disconnect = generic_disconnect,
#ifdef CONFIG_PM
.suspend = generic_suspend,
.resume = generic_resume,
#endif
.supports_autosuspend = 1,
};
==>generic_probe
==>usb_set_configuration // 生成该设置配置描述下的所有接口描述符所描述的接口dev对象
==>ret = device_add(&intf->dev);
int usb_set_configuration(struct usb_device *dev, int configuration)
{
int i, ret;
struct usb_host_config *cp = NULL;
struct usb_interface **new_interfaces = NULL;
int n, nintf;
if (dev->authorized == 0 || configuration == -1)
configuration = 0;
else {
for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
if (dev->config[i].desc.bConfigurationValue ==
configuration) {
cp = &dev->config[i];
break;
}
}
}
if ((!cp && configuration != 0))
return -EINVAL;
/* The USB spec says configuration 0 means unconfigured.
* But if a device includes a configuration numbered 0,
* we will accept it as a correctly configured state.
* Use -1 if you really want to unconfigure the device.
*/
if (cp && configuration == 0)
dev_warn(&dev->dev, "config 0 descriptor??\n");
/* Allocate memory for new interfaces before doing anything else,
* so that if we run out then nothing will have changed. */
n = nintf = 0;
if (cp) {
nintf = cp->desc.bNumInterfaces;
new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
GFP_KERNEL);
if (!new_interfaces) {
dev_err(&dev->dev, "Out of memory\n");
return -ENOMEM;
}
for (; n < nintf; ++n) {
new_interfaces[n] = kzalloc(
sizeof(struct usb_interface),
GFP_KERNEL);
if (!new_interfaces[n]) {
dev_err(&dev->dev, "Out of memory\n");
ret = -ENOMEM;
free_interfaces:
while (--n >= 0)
kfree(new_interfaces[n]);
kfree(new_interfaces);
return ret;
}
}
i = dev->bus_mA - cp->desc.bMaxPower * 2;
if (i < 0)
dev_warn(&dev->dev, "new config #%d exceeds power "
"limit by %dmA\n",
configuration, -i);
}
/* Wake up the device so we can send it the Set-Config request */
ret = usb_autoresume_device(dev);
if (ret)
goto free_interfaces;
/* if it's already configured, clear out old state first.
* getting rid of old interfaces means unbinding their drivers.
*/
if (dev->state != USB_STATE_ADDRESS)
usb_disable_device(dev, 1); /* Skip ep0 */
ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
NULL, 0, USB_CTRL_SET_TIMEOUT);
if (ret < 0) {
/* All the old state is gone, so what else can we do?
* The device is probably useless now anyway.
*/
cp = NULL;
}
dev->actconfig = cp;
if (!cp) {
usb_set_device_state(dev, USB_STATE_ADDRESS);
usb_autosuspend_device(dev);
goto free_interfaces;
}
usb_set_device_state(dev, USB_STATE_CONFIGURED);
/* Initialize the new interface structures and the
* hc/hcd/usbcore interface/endpoint state.
*/
for (i = 0; i < nintf; ++i) {
struct usb_interface_cache *intfc;
struct usb_interface *intf;
struct usb_host_interface *alt;
cp->interface[i] = intf = new_interfaces[i];
intfc = cp->intf_cache[i];
intf->altsetting = intfc->altsetting;
intf->num_altsetting = intfc->num_altsetting;
intf->intf_assoc = find_iad(dev, cp, i);
kref_get(&intfc->ref);
alt = usb_altnum_to_altsetting(intf, 0);
/* No altsetting 0? We'll assume the first altsetting.
* We could use a GetInterface call, but if a device is
* so non-compliant that it doesn't have altsetting 0
* then I wouldn't trust its reply anyway.
*/
if (!alt)
alt = &intf->altsetting[0];
intf->cur_altsetting = alt;
usb_enable_interface(dev, intf);
intf->dev.parent = &dev->dev;
intf->dev.driver = NULL;
intf->dev.bus = &usb_bus_type; // 位于usb_bus_type总线
intf->dev.type = &usb_if_device_type; // 为接口设备,这样在usb_device_match中将去和接口驱动去匹配[luther.gliethttp]
intf->dev.dma_mask = dev->dev.dma_mask;
device_initialize(&intf->dev);
mark_quiesced(intf);
sprintf(&intf->dev.bus_id[0], "%d-%s:%d.%d",
dev->bus->busnum, dev->devpath,
configuration, alt->desc.bInterfaceNumber);
}
kfree(new_interfaces);
if (cp->string == NULL)
cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
/* Now that all the interfaces are set up, register them
* to trigger binding of drivers to interfaces. probe()
* routines may install different altsettings and may
* claim() any interfaces not yet bound. Many class drivers
* need that: CDC, audio, video, etc.
*/
for (i = 0; i < nintf; ++i) {
struct usb_interface *intf = cp->interface[i];
dev_dbg(&dev->dev,
"adding %s (config #%d, interface %d)\n",
intf->dev.bus_id, configuration,
intf->cur_altsetting->desc.bInterfaceNumber);
ret = device_add(&intf->dev); // 将接口设备添加bus总线上同时到sysfs系统中.
if (ret != 0) {
dev_err(&dev->dev, "device_add(%s) --> %d\n",
intf->dev.bus_id, ret);
continue;
}
usb_create_sysfs_intf_files(intf);
}
usb_autosuspend_device(dev);
return 0;
}
如下是一个整体代码流程:
driver_probe_device
int driver_probe_device(struct device_driver *drv, struct device *dev)
{
int ret = 0;
if (!device_is_registered(dev)) // 1.设备已经完成了注册到bus总线工作
return -ENODEV;
if (drv->bus->match && !drv->bus->match(dev, drv)) // 2.执行bus提供的match操作usb_device_match
goto done;
pr_debug("bus: '%s': %s: matched device %s with driver %s\n",
drv->bus->name, __FUNCTION__, dev->bus_id, drv->name);
ret = really_probe(dev, drv); // bus的match通过检验,这里做进一步的probe检验,
// 如果bus提供了probe,那么执行bus->probe(dev);
// 否则执行driver提供的probe函数drv->probe(dev);
done:
return ret;
}
==>usb_bus_type
==>usb_device_match
static int usb_device_match(struct device *dev, struct device_driver *drv)
{
/* devices and interfaces are handled separately */
if (is_usb_device(dev)) {
/* interface drivers never match devices */
if (!is_usb_device_driver(drv))
return 0;
/* TODO: Add real matching code */
return 1;
} else {
struct usb_interface *intf;
struct usb_driver *usb_drv;
const struct usb_device_id *id;
/* device drivers never match interfaces */
if (is_usb_device_driver(drv))
return 0;
intf = to_usb_interface(dev); // 转为接口dev设备
usb_drv = to_usb_driver(drv); // 转为usb驱动
id = usb_match_id(intf, usb_drv->id_table); // 接口设备与usb接口驱动的id_table值表进行匹配尝试[luther.gliethttp]
if (id)
return 1;
id = usb_match_dynamic_id(intf, usb_drv);
if (id)
return 1;
}
return 0;
}
==>really_probe
static int really_probe(struct device *dev, struct device_driver *drv)
{
int ret = 0;
atomic_inc(&probe_count);
pr_debug("bus: '%s': %s: probing driver %s with device %s\n",
drv->bus->name, __FUNCTION__, drv->name, dev->bus_id);
WARN_ON(!list_empty(&dev->devres_head));
dev->driver = drv; // 先假定该driver就是驱动本dev的驱动,后面讲做进一步确认[luther.gliethttp]
if (driver_sysfs_add(dev)) {
printk(KERN_ERR "%s: driver_sysfs_add(%s) failed\n",
__FUNCTION__, dev->bus_id);
goto probe_failed;
}
if (dev->bus->probe) {
ret = dev->bus->probe(dev); // 如果bus总线提供probe,那么执行之
if (ret)
goto probe_failed;
} else if (drv->probe) {
ret = drv->probe(dev); // 如果driver提供probe,那么执行之,
// 我们这里就是new_driver->drvwrap.driver.probe = usb_probe_interface;
if (ret)
goto probe_failed;
}
driver_bound(dev);
ret = 1;
pr_debug("bus: '%s': %s: bound device %s to driver %s\n",
drv->bus->name, __FUNCTION__, dev->bus_id, drv->name);
goto done;
probe_failed:
devres_release_all(dev);
driver_sysfs_remove(dev);
dev->driver = NULL;
if (ret != -ENODEV && ret != -ENXIO) {
/* driver matched but the probe failed */
printk(KERN_WARNING
"%s: probe of %s failed with error %d\n",
drv->name, dev->bus_id, ret);
}
/*
* Ignore errors returned by ->probe so that the next driver can try
* its luck.
*/
ret = 0;
done:
atomic_dec(&probe_count);
wake_up(&probe_waitqueue);
return ret;
}
==>usb_probe_interface 即:new_driver->drvwrap.driver.probe = usb_probe_interface;
/* called from driver core with dev locked */
static int usb_probe_interface(struct device *dev)
{
struct usb_driver *driver = to_usb_driver(dev->driver);
struct usb_interface *intf;
struct usb_device *udev;
const struct usb_device_id *id;
int error = -ENODEV;
dev_dbg(dev, "%s\n", __FUNCTION__);
if (is_usb_device(dev)) /* Sanity check */
return error;
intf = to_usb_interface(dev);
udev = interface_to_usbdev(intf);
if (udev->authorized == 0) {
dev_err(&intf->dev, "Device is not authorized for usage\n");
return -ENODEV;
}
id = usb_match_id(intf, driver->id_table);
if (!id)
id = usb_match_dynamic_id(intf, driver);
if (id) {
dev_dbg(dev, "%s - got id\n", __FUNCTION__);
error = usb_autoresume_device(udev);
if (error)
return error;
/* Interface "power state" doesn't correspond to any hardware
* state whatsoever. We use it to record when it's bound to
* a driver that may start I/0: it's not frozen/quiesced.
*/
mark_active(intf);
intf->condition = USB_INTERFACE_BINDING;
/* The interface should always appear to be in use
* unless the driver suports autosuspend.
*/
intf->pm_usage_cnt = !(driver->supports_autosuspend);
error = driver->probe(intf, id); // 调用usb_driver驱动定义的probe函数,我们这里就是usb_serial_probe即:mct_u232_driver.probe
if (error) {
mark_quiesced(intf);
intf->needs_remote_wakeup = 0;
intf->condition = USB_INTERFACE_UNBOUND;
} else
intf->condition = USB_INTERFACE_BOUND;
usb_autosuspend_device(udev);
}
return error;
}
==>usb_serial_probe即:mct_u232_driver.probe函数
int usb_serial_probe(struct usb_interface *interface,
const struct usb_device_id *id)
{
struct usb_device *dev = interface_to_usbdev (interface);
struct usb_serial *serial = NULL;
struct usb_serial_port *port;
struct usb_host_interface *iface_desc;
struct usb_endpoint_descriptor *endpoint;
struct usb_endpoint_descriptor *interrupt_in_endpoint[MAX_NUM_PORTS];
struct usb_endpoint_descriptor *interrupt_out_endpoint[MAX_NUM_PORTS];
struct usb_endpoint_descriptor *bulk_in_endpoint[MAX_NUM_PORTS];
struct usb_endpoint_descriptor *bulk_out_endpoint[MAX_NUM_PORTS];
struct usb_serial_driver *type = NULL;
int retval;
int minor;
int buffer_size;
int i;
int num_interrupt_in = 0;
int num_interrupt_out = 0;
int num_bulk_in = 0;
int num_bulk_out = 0;
int num_ports = 0;
int max_endpoints;
lock_kernel(); /* guard against unloading a serial driver module */
type = search_serial_device(interface); // 遍历usb_serial_driver_list链表,搜索与该interface匹配上的串口驱动,
// usb_serial_driver_list链表元素由函数usb_serial_driver_list添加
// 我们这里将返回type = &mct_u232_device;[luther.gliethtp]
/*
static struct usb_serial_driver *search_serial_device(struct usb_interface *iface)
{
const struct usb_device_id *id;
struct usb_serial_driver *drv;
list_for_each_entry(drv, &usb_serial_driver_list, driver_list) {
id = get_iface_id(drv, iface);
if (id)
return drv;
}
return NULL;
}
==>usb_serial_register // 添加serial驱动到usb_serial_driver_list链表上[luther.gliethttp]
static struct usb_serial_driver mct_u232_device = {...};
usb_serial_register(&mct_u232_device); // 注册mct_u232串口驱动到usb_serial_driver_list链表上
int usb_serial_register(struct usb_serial_driver *driver)
{
int retval;
fixup_generic(driver); // 填入driver没有定义的默认方法
if (!driver->description)
driver->description = driver->driver.name;
// Add this device to our list of devices
list_add(&driver->driver_list, &usb_serial_driver_list); // 将mct_u232_device添加到usb_serial_driver_list链表上
retval = usb_serial_bus_register(driver);
if (retval) {
err("problem %d when registering driver %s", retval, driver->description);
list_del(&driver->driver_list);
}
else
info("USB Serial support registered for %s", driver->description);
return retval;
}
int usb_serial_bus_register(struct usb_serial_driver *driver)
{
int retval;
driver->driver.bus = &usb_serial_bus_type;
spin_lock_init(&driver->dynids.lock);
INIT_LIST_HEAD(&driver->dynids.list);
retval = driver_register(&driver->driver);
return retval;
}
*/
if (!type) {
unlock_kernel();
dbg("none matched");
return -ENODEV;
}
serial = create_serial (dev, interface, type); // 创建serial串口设备
/*
static struct usb_serial * create_serial (struct usb_device *dev,
struct usb_interface *interface,
struct usb_serial_driver *driver)
{
struct usb_serial *serial;
serial = kzalloc(sizeof(*serial), GFP_KERNEL); // 全0空间
if (!serial) {
dev_err(&dev->dev, "%s - out of memory\n", __FUNCTION__);
return NULL;
}
serial->dev = usb_get_dev(dev); // 该serial对应的usb设备描述符对应的设备结构体[luther.gliethttp]
serial->type = driver; // 该serial对应的driver
serial->interface = interface; // 该serial对应的interface
kref_init(&serial->kref);
mutex_init(&serial->disc_mutex);
return serial;
}
*/
if (!serial) {
unlock_kernel();
dev_err(&interface->dev, "%s - out of memory\n", __FUNCTION__);
return -ENOMEM;
}
/* if this device type has a probe function, call it */
if (type->probe) { // mct_u232_device串口驱动没有probe函数
const struct usb_device_id *id;
if (!try_module_get(type->driver.owner)) {
unlock_kernel();
dev_err(&interface->dev, "module get failed, exiting\n");
kfree (serial);
return -EIO;
}
id = get_iface_id(type, interface);
retval = type->probe(serial, id);
module_put(type->driver.owner);
if (retval) {
unlock_kernel();
dbg ("sub driver rejected device");
kfree (serial);
return retval;
}
}
/* descriptor matches, let's find the endpoints needed */
/* check out the endpoints */
iface_desc = interface->cur_altsetting; // 当前接口对应的接口描述符信息[luther.gliethttp]
for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { // 为该接口dev设备收集端点通信管道
endpoint = &iface_desc->endpoint[i].desc;
if (usb_endpoint_is_bulk_in(endpoint)) {
/* we found a bulk in endpoint */
dbg("found bulk in on endpoint %d", i);
bulk_in_endpoint[num_bulk_in] = endpoint; // 批量IN端点
++num_bulk_in;
}
if (usb_endpoint_is_bulk_out(endpoint)) {
/* we found a bulk out endpoint */
dbg("found bulk out on endpoint %d", i);
bulk_out_endpoint[num_bulk_out] = endpoint; // 批量OUT端点
++num_bulk_out;
}
if (usb_endpoint_is_int_in(endpoint)) {
/* we found a interrupt in endpoint */
dbg("found interrupt in on endpoint %d", i);
interrupt_in_endpoint[num_interrupt_in] = endpoint; // 中断IN端点
++num_interrupt_in;
}
if (usb_endpoint_is_int_out(endpoint)) {
/* we found an interrupt out endpoint */
dbg("found interrupt out on endpoint %d", i);
interrupt_out_endpoint[num_interrupt_out] = endpoint; // 中断OUT端点
++num_interrupt_out;
}
}
#if defined(CONFIG_USB_SERIAL_PL2303) || defined(CONFIG_USB_SERIAL_PL2303_MODULE)
// 执行PL2303 usb转串口设备的IN端点信息特殊处理[luther.gliethttp]
/* BEGIN HORRIBLE HACK FOR PL2303 */
/* this is needed due to the looney way its endpoints are set up */
if (((le16_to_cpu(dev->descriptor.idVendor) == PL2303_VENDOR_ID) &&
(le16_to_cpu(dev->descriptor.idProduct) == PL2303_PRODUCT_ID)) ||
((le16_to_cpu(dev->descriptor.idVendor) == ATEN_VENDOR_ID) &&
(le16_to_cpu(dev->descriptor.idProduct) == ATEN_PRODUCT_ID)) ||
((le16_to_cpu(dev->descriptor.idVendor) == ALCOR_VENDOR_ID) &&
(le16_to_cpu(dev->descriptor.idProduct) == ALCOR_PRODUCT_ID))) {
if (interface != dev->actconfig->interface[0]) { // 如果当前PL2303 usb转串口不等于0接口,dev->actconfig->interface[0]
/* check out the endpoints of the other interface*/
iface_desc = dev->actconfig->interface[0]->cur_altsetting; // 那么将0接口中的中断IN端点添加到该serial设备中
for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
endpoint = &iface_desc->endpoint[i].desc;
if (usb_endpoint_is_int_in(endpoint)) {
/* we found a interrupt in endpoint */
dbg("found interrupt in for Prolific device on separate interface");
interrupt_in_endpoint[num_interrupt_in] = endpoint;
++num_interrupt_in;
}
}
}
/* Now make sure the PL-2303 is configured correctly.
* If not, give up now and hope this hack will work
* properly during a later invocation of usb_serial_probe
*/
if (num_bulk_in == 0 || num_bulk_out == 0) {
unlock_kernel();
dev_info(&interface->dev, "PL-2303 hack: descriptors matched but endpoints did not\n");
kfree (serial);
return -ENODEV;
}
}
/* END HORRIBLE HACK FOR PL2303 */
#endif
#ifdef CONFIG_USB_SERIAL_GENERIC
if (type == &usb_serial_generic_device) {
num_ports = num_bulk_out;
if (num_ports == 0) { // 如果是usb_serial_generic_device驱动,那么批量OUT端点务必要存在,并且可用端点个数就是批量OUT端点个数.
unlock_kernel();
dev_err(&interface->dev, "Generic device with no bulk out, not allowed.\n");
kfree (serial);
return -EIO;
}
}
#endif
if (!num_ports) { // 好,不是usb_serial_generic_device驱动
/* if this device type has a calc_num_ports function, call it */
if (type->calc_num_ports) { // 是否需要调用计算函数计算端点个数
if (!try_module_get(type->driver.owner)) {
unlock_kernel();
dev_err(&interface->dev, "module get failed, exiting\n");
kfree (serial);
return -EIO;
}
num_ports = type->calc_num_ports (serial);
module_put(type->driver.owner);
}
if (!num_ports)
num_ports = type->num_ports; // 由usb转串口接口驱动定义端点个数:mct_u232_device定义num_ports为1
}
serial->num_ports = num_ports; // 端点个数
serial->num_bulk_in = num_bulk_in; // 批量IN端点个数
serial->num_bulk_out = num_bulk_out; // 批量OUT端点个数
serial->num_interrupt_in = num_interrupt_in; // 中断IN端点个数
serial->num_interrupt_out = num_interrupt_out; // 中断OUT端点个数
#if 0
/* check that the device meets the driver's requirements */
if ((type->num_interrupt_in != NUM_DONT_CARE &&
type->num_interrupt_in != num_interrupt_in)
|| (type->num_interrupt_out != NUM_DONT_CARE &&
type->num_interrupt_out != num_interrupt_out)
|| (type->num_bulk_in != NUM_DONT_CARE &&
type->num_bulk_in != num_bulk_in)
|| (type->num_bulk_out != NUM_DONT_CARE &&
type->num_bulk_out != num_bulk_out)) {
dbg("wrong number of endpoints");
kfree(serial);
return -EIO;
}
#endif
/* found all that we need */
dev_info(&interface->dev, "%s converter detected\n",
type->description);
/* create our ports, we need as many as the max endpoints */
/* we don't use num_ports here cauz some devices have more endpoint pairs than ports */
max_endpoints = max(num_bulk_in, num_bulk_out);
max_endpoints = max(max_endpoints, num_interrupt_in);
max_endpoints = max(max_endpoints, num_interrupt_out);
max_endpoints = max(max_endpoints, (int)serial->num_ports);
serial->num_port_pointers = max_endpoints;
unlock_kernel();
dbg("%s - setting up %d port structures for this device", __FUNCTION__, max_endpoints);
for (i = 0; i < max_endpoints; ++i) {
port = kzalloc(sizeof(struct usb_serial_port), GFP_KERNEL); // 申请4种端点集合结构体struct usb_serial_port
if (!port)
goto probe_error;
port->serial = serial;
spin_lock_init(&port->lock);
mutex_init(&port->mutex);
INIT_WORK(&port->work, usb_serial_port_work); // 设置工作队列work_queue
serial->port[i] = port;
}
/* set up the endpoint information */
for (i = 0; i < num_bulk_in; ++i) {
endpoint = bulk_in_endpoint[i];
port = serial->port[i];
port->read_urb = usb_alloc_urb (0, GFP_KERNEL); // 申请URB控制结构体
if (!port->read_urb) {
dev_err(&interface->dev, "No free urbs available\n");
goto probe_error;
}
buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);
port->bulk_in_size = buffer_size; // 端点大小
port->bulk_in_endpointAddress = endpoint->bEndpointAddress; // 端点地址
port->bulk_in_buffer = kmalloc (buffer_size, GFP_KERNEL); // 端点管道数据缓冲区
if (!port->bulk_in_buffer) {
dev_err(&interface->dev, "Couldn't allocate bulk_in_buffer\n");
goto probe_error;
}
// 填充上面申请到的read_urb URB控制结构体
usb_fill_bulk_urb (port->read_urb, dev,
usb_rcvbulkpipe (dev,
endpoint->bEndpointAddress),
port->bulk_in_buffer, buffer_size,
serial->type->read_bulk_callback, // 在mct_u232_device中定义的批量读回调函数
port);
}
for (i = 0; i < num_bulk_out; ++i) {
endpoint = bulk_out_endpoint[i];
port = serial->port[i];
port->write_urb = usb_alloc_urb(0, GFP_KERNEL);// 申请URB控制结构体
if (!port->write_urb) {
dev_err(&interface->dev, "No free urbs available\n");
goto probe_error;
}
buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);
port->bulk_out_size = buffer_size;
port->bulk_out_endpointAddress = endpoint->bEndpointAddress;
port->bulk_out_buffer = kmalloc (buffer_size, GFP_KERNEL);
if (!port->bulk_out_buffer) {
dev_err(&interface->dev, "Couldn't allocate bulk_out_buffer\n");
goto probe_error;
}
// 填充上面申请到的write_urb URB控制结构体
usb_fill_bulk_urb (port->write_urb, dev,
usb_sndbulkpipe (dev,
endpoint->bEndpointAddress),
port->bulk_out_buffer, buffer_size,
serial->type->write_bulk_callback,// 在mct_u232_device中定义的批量写回调函数
port);
}
if (serial->type->read_int_callback) {
for (i = 0; i < num_interrupt_in; ++i) {
endpoint = interrupt_in_endpoint[i];
port = serial->port[i];
port->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL);// 申请URB控制结构体
if (!port->interrupt_in_urb) {
dev_err(&interface->dev, "No free urbs available\n");
goto probe_error;
}
buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);
port->interrupt_in_endpointAddress = endpoint->bEndpointAddress;
port->interrupt_in_buffer = kmalloc (buffer_size, GFP_KERNEL);
if (!port->interrupt_in_buffer) {
dev_err(&interface->dev, "Couldn't allocate interrupt_in_buffer\n");
goto probe_error;
}
// 填充上面申请到的interrupt_in_urb URB控制结构体
usb_fill_int_urb (port->interrupt_in_urb, dev,
usb_rcvintpipe (dev,
endpoint->bEndpointAddress),
port->interrupt_in_buffer, buffer_size,
serial->type->read_int_callback, port, // 在mct_u232_device中定义的INT中断读回调函数
endpoint->bInterval);
}
} else if (num_interrupt_in) {
dbg("the device claims to support interrupt in transfers, but read_int_callback is not defined");
}
if (serial->type->write_int_callback) {
for (i = 0; i < num_interrupt_out; ++i) {
endpoint = interrupt_out_endpoint[i];
port = serial->port[i];
port->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL);// 申请URB控制结构体
if (!port->interrupt_out_urb) {
dev_err(&interface->dev, "No free urbs available\n");
goto probe_error;
}
buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);
port->interrupt_out_size = buffer_size;
port->interrupt_out_endpointAddress = endpoint->bEndpointAddress;
port->interrupt_out_buffer = kmalloc (buffer_size, GFP_KERNEL);
if (!port->interrupt_out_buffer) {
dev_err(&interface->dev, "Couldn't allocate interrupt_out_buffer\n");
goto probe_error;
}
// 填充上面申请到的interrupt_out_urb URB控制结构体
usb_fill_int_urb (port->interrupt_out_urb, dev,
usb_sndintpipe (dev,
endpoint->bEndpointAddress),
port->interrupt_out_buffer, buffer_size,
serial->type->write_int_callback, port,// 在mct_u232_device中定义的INT中断写回调函数
endpoint->bInterval);
}
} else if (num_interrupt_out) {
dbg("the device claims to support interrupt out transfers, but write_int_callback is not defined");
}
/* if this device type has an attach function, call it */
if (type->attach) { // mct_u232_device定义了attach方法的实现mct_u232_startup
if (!try_module_get(type->driver.owner)) {
dev_err(&interface->dev, "module get failed, exiting\n");
goto probe_error;
}
retval = type->attach (serial);
module_put(type->driver.owner);
if (retval < 0)
goto probe_error;
if (retval > 0) {
/* quietly accept this device, but don't bind to a serial port
* as it's about to disappear */
goto exit;
}
}
if (get_free_serial (serial, num_ports, &minor) == NULL) { // 申请次设备号,同时:serial->port[j++]->number = i;
dev_err(&interface->dev, "No more free serial devices\n");
goto probe_error;
}
serial->minor = minor; // 该serial的次设备号为minor
/* register all of the individual ports with the driver core */
for (i = 0; i < num_ports; ++i) {
port = serial->port[i];
port->dev.parent = &interface->dev; // 接口当然为端点端口的父object
port->dev.driver = NULL;
port->dev.bus = &usb_serial_bus_type; // port位于usb_serial_bus_type总线
port->dev.release = &port_release;
snprintf (&port->dev.bus_id[0], sizeof(port->dev.bus_id), "ttyUSB%d", port->number);
dbg ("%s - registering %s", __FUNCTION__, port->dev.bus_id);
retval = device_register(&port->dev); // 登记注册该port对应的dev设备信息,同样在bus总线usb_serial_bus_type上执行match动作.
if (retval)
dev_err(&port->dev, "Error registering port device, "
"continuing\n");
}
usb_serial_console_init (debug, minor);
exit:
/* success */
usb_set_intfdata (interface, serial);
return 0;
probe_error:
for (i = 0; i < num_bulk_in; ++i) {
port = serial->port[i];
if (!port)
continue;
usb_free_urb(port->read_urb);
kfree(port->bulk_in_buffer);
}
for (i = 0; i < num_bulk_out; ++i) {
port = serial->port[i];
if (!port)
continue;
usb_free_urb(port->write_urb);
kfree(port->bulk_out_buffer);
}
for (i = 0; i < num_interrupt_in; ++i) {
port = serial->port[i];
if (!port)
continue;
usb_free_urb(port->interrupt_in_urb);
kfree(port->interrupt_in_buffer);
}
for (i = 0; i < num_interrupt_out; ++i) {
port = serial->port[i];
if (!port)
continue;
usb_free_urb(port->interrupt_out_urb);
kfree(port->interrupt_out_buffer);
}
/* free up any memory that we allocated */
for (i = 0; i < serial->num_port_pointers; ++i)
kfree(serial->port[i]);
kfree (serial);
return -EIO;
}
==>usb_serial_bus_type总线驱动port各种端点端口组合结构体
device_register(&port->dev); // 登记注册该port对应的dev设备信息,同样在bus总线usb_serial_bus_type上执行match动作.
struct bus_type usb_serial_bus_type = {
.name = "usb-serial",
.match = usb_serial_device_match,
.probe = usb_serial_device_probe,
.remove = usb_serial_device_remove,
.drv_attrs = drv_attrs,
};
==>usb_serial_device_match
static int usb_serial_device_match (struct device *dev, struct device_driver *drv)
{
struct usb_serial_driver *driver;
const struct usb_serial_port *port;
/*
* drivers are already assigned to ports in serial_probe so it's
* a simple check here.
*/
port = to_usb_serial_port(dev);
if (!port)
return 0;
driver = to_usb_serial_driver(drv);
if (driver == port->serial->type) // 等于mct_u232_device驱动,那么返回1
// port->serial在serial = create_serial (dev, interface, type); 中创建.
// serial->type = driver; // 该serial对应的driver
return 1;
return 0;
}
==>usb_serial_device_probe
static int usb_serial_device_probe (struct device *dev)
{
struct usb_serial_driver *driver;
struct usb_serial_port *port;
int retval = 0;
int minor;
port = to_usb_serial_port(dev);
if (!port) {
retval = -ENODEV;
goto exit;
}
driver = port->serial->type;
if (driver->port_probe) { // mct_u232_device没有port_probe
if (!try_module_get(driver->driver.owner)) {
dev_err(dev, "module get failed, exiting\n");
retval = -EIO;
goto exit;
}
retval = driver->port_probe (port);
module_put(driver->driver.owner);
if (retval)
goto exit;
}
retval = device_create_file(dev, &dev_attr_port_number); // 创建sysfs文件系统中对应的文件[luther.gliethttp]
if (retval)
goto exit;
minor = port->number; // 在上面的get_free_serial函数中执行了serial->port[j++]->number = i;赋值操作,所以可以为ttyUSB0,ttyUSB1,...
// port->number就是serial_table[port->number]数组索引号
tty_register_device (usb_serial_tty_driver, minor, dev); // 注册次设备号为minor的tty设备,该/dev/ttyUSBx设备由usb_serial_tty_driver驱动程序管理
dev_info(&port->serial->dev->dev,
"%s converter now attached to ttyUSB%d\n",
driver->description, minor);
exit:
return retval;
}
==>tty_register_device(usb_serial_tty_driver, minor, dev);
// usb_serial_tty_driver在usb_serial_init,即:module_init(usb_serial_init);
// usb_serial_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
// tty_set_operations(usb_serial_tty_driver, &serial_ops);
// tty_register_driver(usb_serial_tty_driver);==>list_add(&driver->tty_drivers, &tty_drivers);将自己添加到tty_drivers链表中
struct device *tty_register_device(struct tty_driver *driver, unsigned index,
struct device *device)
{
char name[64];
dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
if (index >= driver->num) {
printk(KERN_ERR "Attempt to register invalid tty line number "
" (%d).\n", index);
return ERR_PTR(-EINVAL);
}
if (driver->type == TTY_DRIVER_TYPE_PTY)
pty_line_name(driver, index, name);
else
tty_line_name(driver, index, name); // 非pty设备
return device_create(tty_class, device, dev, name);
// 创建sysfs文件系统下的文件,同时uevent到用户空间,创建/dev/ttyUSB0...等
// 对/dev/ttyUSB0...等操作方法为tty_fops
// /dev/ttyUSB0...等在SERIAL_TTY_MAJOR ~ SERIAL_TTY_MAJOR + SERIAL_TTY_MINORS之间的设备号读写操作均由tty_fops
// 方法集提供,
// tty_register_driver(usb_serial_tty_driver);
// 比如open
// tty_open==>tty->driver->open即:serial_ops.serial_open
}
==>tty_register_driver(usb_serial_tty_driver); // 注册驱动/dev/xxx字符设备的tty驱动程序
dev = MKDEV(driver->major, driver->minor_start);
error = register_chrdev_region(dev, driver->num, driver->name); // 设备号从dev到dev+driver->num个字符设备都将由该driver驱动
cdev_init(&driver->cdev, &tty_fops); // 注册该MAJOR到MINOR之间的/dev/xxx字符设备节点对应的操作函数集为tty_fops
cdev_add(&driver->cdev, dev, driver->num); // 添加到字符管理数值中
static const struct file_operations tty_fops = {
.llseek = no_llseek,
.read = tty_read,
.write = tty_write,
.poll = tty_poll,
.ioctl = tty_ioctl,
.compat_ioctl = tty_compat_ioctl,
.open = tty_open,
.release = tty_release,
.fasync = tty_fasync,
};
==>cdev_add
int cdev_add(struct cdev *p, dev_t dev, unsigned count)
{
p->dev = dev;
p->count = count;
return kobj_map(cdev_map, dev, count, NULL, exact_match, exact_lock, p); // 将&driver->cdev添加到cdev_map字符设备驱动管理数组中,以备下面sys_open时kobj_lookup使用[luther.gliethttp]
}
看看系统调用open函数
open("/dev/ttyUSB0")
==>chrdev_open // sys_open将调用字符设备驱动函数集中open函数chrdev_open
const struct file_operations def_chr_fops = {
.open = chrdev_open,
};
==>kobj = kobj_lookup(cdev_map, inode->i_rdev, &idx); // 搜索上面cdev_add登记的usb_serial_tty_driver驱动 调用exact_match返回&driver->cdev.kobj
new = container_of(kobj, struct cdev, kobj);
inode->i_cdev = p = new; // 由上面cdev_init(&driver->cdev, &tty_fops); 初始化cdev->ops = &tty_fops
filp->f_op = fops_get(p->ops); // 获取驱动方法集
filp->f_op->open(inode,filp);
==>tty_open同时在tty_drivers链表上调用get_tty_driver函数搜索,
"/dev/ttyUSB0"设备节点号对应的tty_drivers,比如搜索到usb_serial_tty_driver驱动,
那么它就是tty->driver了.同时生成tty:init_dev(driver, index, &tty);其中index表示该字符设备为驱动管理的第index索引处设备.
之后init_dev==>tty = alloc_tty_struct();
==>initialize_tty_struct(tty); // 初始化该tty的ldisc等于tty_ldisc_N_TTY即tty->ldisc = &tty_ldisc_N_TTY;
tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));为tty->ldisc绑定线路规程
console_init==>注册tty_ldisc_N_TTY线路规程
tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
struct tty_ldisc tty_ldisc_N_TTY = {
.magic = TTY_LDISC_MAGIC,
.name = "n_tty",
.open = n_tty_open,
.close = n_tty_close,
.flush_buffer = n_tty_flush_buffer,
.chars_in_buffer = n_tty_chars_in_buffer,
.read = read_chan,
.write = write_chan,
.ioctl = n_tty_ioctl,
.set_termios = n_tty_set_termios,
.poll = normal_poll,
.receive_buf = n_tty_receive_buf,
.write_wakeup = n_tty_write_wakeup
};
==>tty->driver = driver;
==>tty->index = idx; // 该tty在driver中的索引值
==>tty_line_name(driver, idx, tty->name);
==>driver->ttys[idx] = tty; // dirver管理的第index个设备指针[luther.gliethttp]
==>(tty->ldisc.open)(tty); // 调用tty_ldisc_N_TTY.open即n_tty_open函数
之后filp->private_data = tty;
之后tty->driver->open
==>tty->driver->open就是usb_serial_tty_driver.open即:serial_ops.serial_open
==>serial_open // 执行设备实际打开操作
static int serial_open (struct tty_struct *tty, struct file * filp)
{
struct usb_serial *serial;
struct usb_serial_port *port;
unsigned int portNumber;
int retval;
dbg("%s", __FUNCTION__);
/* get the serial object associated with this tty pointer */
serial = usb_serial_get_by_index(tty->index); // 就是 return serial_table[index];因为driver的串口索引就等于serial_table数组的索引.
if (!serial) {
tty->driver_data = NULL;
return -ENODEV;
}
portNumber = tty->index - serial->minor; // 端口号为当前dev设备的串口索引index减去该serial设备登记的起始索引值,比如一个
// serial设备可以有多个port,比如有3个,那么portNumber就可能等于0,1或者2.[luther.gliethttp]
port = serial->port[portNumber]; // 获取'/dev/ttyUSBx'对应的port
if (!port) {
retval = -ENODEV;
goto bailout_kref_put;
}
if (mutex_lock_interruptible(&port->mutex)) {
retval = -ERESTARTSYS;
goto bailout_kref_put;
}
++port->open_count;
/* set up our port structure making the tty driver
* remember our port object, and us it */
tty->driver_data = port; // 驱动driver_data似有数据为port
port->tty = tty; // 该port服务于该tty
if (port->open_count == 1) { // 第1次打开
/* lock this module before we call it
* this may fail, which means we must bail out,
* safe because we are called with BKL held */
if (!try_module_get(serial->type->driver.owner)) {
retval = -ENODEV;
goto bailout_mutex_unlock;
}
retval = usb_autopm_get_interface(serial->interface);
if (retval)
goto bailout_module_put;
/* only call the device specific open if this
* is the first time the port is opened */
retval = serial->type->open(port, filp); // 执行mct_u232_device.open即:mct_u232_open
if (retval)
goto bailout_interface_put;
}
mutex_unlock(&port->mutex);
return 0; // ok,至此sys_open工作就算彻底完成了[luther.gliethttp]
bailout_interface_put:
usb_autopm_put_interface(serial->interface);
bailout_module_put:
module_put(serial->type->driver.owner);
bailout_mutex_unlock:
port->open_count = 0;
tty->driver_data = NULL;
port->tty = NULL;
mutex_unlock(&port->mutex);
bailout_kref_put:
usb_serial_put(serial);
return retval;
}
tty_write
==>do_tty_write(ld->write, tty, file, buf, count);调用线路规程tty_ldisc_N_TTY的write函数write_chan
==>write_chan
==>tty->driver->write(tty, b, nr);就是上面的usb_serial_tty_driver.write即:serial_ops.serial_write
==>serial_write将调用port->serial->type->write(port, buf, count);就是mct_u232_device的write函数
在usb_serial_register(&mct_u232_device);中将使用fixup_generic(driver);函数填充mct_u232_device未定义的操作函数集.
所以mct_u232_device的write函数为usb_serial_generic_write
==>mct_u232_device.write即:usb_serial_generic_write
==>usb_serial_generic_write
==>usb_submit_urb(port->write_urb, GFP_ATOMIC); // 提交一个URB
==>usb_hcd_submit_urb(urb, mem_flags);
==>hcd->driver->urb_enqueue(hcd, urb, mem_flags);
tty_read
==>(ld->read)(tty, file, buf, count);调用线路规程tty_ldisc_N_TTY的read函数read_chan
==>read_chan
在mct_u232_device中定义了mct_u232_read_int_callback,即中断IN回调函数,当usb转串口设备从usb接口接收到数据之后,
它将执行mct_u232_read_int_callback回调函数,
static void mct_u232_read_int_callback (struct urb *urb)
{
struct usb_serial_port *port = (struct usb_serial_port *)urb->context;
struct mct_u232_private *priv = usb_get_serial_port_data(port);
struct usb_serial *serial = port->serial;
struct tty_struct *tty;
unsigned char *data = urb->transfer_buffer;
int retval;
int status = urb->status;
unsigned long flags;
switch (status) {
case 0:
/* success */
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
/* this urb is terminated, clean up */
dbg("%s - urb shutting down with status: %d",
__FUNCTION__, status);
return;
default:
dbg("%s - nonzero urb status received: %d",
__FUNCTION__, status);
goto exit;
}
if (!serial) {
dbg("%s - bad serial pointer, exiting", __FUNCTION__);
return;
}
dbg("%s - port %d", __FUNCTION__, port->number);
usb_serial_debug_data(debug, &port->dev, __FUNCTION__, urb->actual_length, data);
/*
* Work-a-round: handle the 'usual' bulk-in pipe here
*/
if (urb->transfer_buffer_length > 2) {
int i;
tty = port->tty;
if (urb->actual_length) {
for (i = 0; i < urb->actual_length ; ++i) {
tty_insert_flip_char(tty, data[i], 0); // 将从usb接收到的数据放入tty缓冲区中[luther.gliethttp]
}
tty_flip_buffer_push(tty); // 唤醒pending着的read_chan函数,这样tty就收到数据了
}
goto exit;
}
/*
* The interrupt-in pipe signals exceptional conditions (modem line
* signal changes and errors). data[0] holds MSR, data[1] holds LSR.
*/
spin_lock_irqsave(&priv->lock, flags);
priv->last_msr = data[MCT_U232_MSR_INDEX];
/* Record Control Line states */
mct_u232_msr_to_state(&priv->control_state, priv->last_msr);
#if 0
/* Not yet handled. See belin_sa.c for further information */
/* Now to report any errors */
priv->last_lsr = data[MCT_U232_LSR_INDEX];
/*
* fill in the flip buffer here, but I do not know the relation
* to the current/next receive buffer or characters. I need
* to look in to this before committing any code.
*/
if (priv->last_lsr & MCT_U232_LSR_ERR) {
tty = port->tty;
/* Overrun Error */
if (priv->last_lsr & MCT_U232_LSR_OE) {
}
/* Parity Error */
if (priv->last_lsr & MCT_U232_LSR_PE) {
}
/* Framing Error */
if (priv->last_lsr & MCT_U232_LSR_FE) {
}
/* Break Indicator */
if (priv->last_lsr & MCT_U232_LSR_BI) {
}
}
#endif
spin_unlock_irqrestore(&priv->lock, flags);
exit:
retval = usb_submit_urb (urb, GFP_ATOMIC);
if (retval)
err ("%s - usb_submit_urb failed with result %d",
__FUNCTION__, retval);
}
todo ...
mct_u232_device驱动位于usb_serial_bus_type总线上,mct_u232_driver驱动位于usb_bus_type总线上,当hub发现usb新硬件之后,会首先调用usb_bus_type总线上的mct_u232_driver驱动的probe(),也就是usb_serial_probe(),在usb_serial_probe()中,程序会遍历usb_serial_driver_list驱动链表的所有驱动,并usb_serial_driver_list尝试和发现的新硬件进行匹配,在计算匹配的过程中会调用,drv->bus->match,即:usb_serial_bus_type->match()和dev->bus->probe或者drv->probe即:usb_serial_device_probe(),这样设备就和分别处在两条独立总线上的mct_u232_driver驱动以及mct_u232_device驱动关联上了[gliethttp_20090430].