Chinaunix首页 | 论坛 | 博客
  • 博客访问: 474319
  • 博文数量: 88
  • 博客积分: 1677
  • 博客等级: 上尉
  • 技术积分: 667
  • 用 户 组: 普通用户
  • 注册时间: 2011-11-03 22:17
文章分类

全部博文(88)

文章存档

2013年(1)

2012年(18)

2011年(69)

分类:

2011-11-03 22:40:40



下面简单介绍一下上图中的各个Layer:

*蓝色部分-用户空间应用程序

应用程序层,其中包括Android应用程序以及框架和系统运行库,和底层相关的是系统运行库,而其中和显示相关的就是Android的Surface Manager, 它负责对显示子系统的管理,并且为多个应用程序提 供了2D和3D图层的无缝融合。

*黑色部分-HAL层,在2.2.1部分会有介绍

*红色部分-Linux kernel层

Linux kernel,其中和显示部分相关的就是Linux的FrameBuffer,它是Linux系统中的显示部分驱动程序接口。Linux工作在保护模式 下,User空间的应用程序无法直接调用显卡的驱动程序来直接画屏,FrameBuffer机制模仿显卡的功能,将显卡硬件结构抽象掉,可以通过 Framebuffer的读写直接对显存进行操作。用户可以将Framebuffer看成是显示内存的一个映像,将其映射到进程地址空间之后,就可以直接 进行读写操作,而写操作可以立即反应在屏幕上。这种操作是抽象的,统一的。用户不必关心物理显存的位置、换页机制等等具体细节。这些都是由 Framebuffer设备驱动来完成的。

*绿色部分-HW驱动层

该部分可以看作高通显卡的驱动程序,和高通显示部分硬件相关以及外围LCD相关的驱动都被定义在这边,比如上述的显卡的一些特性都是在这边被初始化的,同样MDP和MDDI相关的驱动也都定义在这里

User Space Display功能介绍

这里的User Space就是与应用程序相关的上层部分(参考上图中的蓝色部分),其中与Kernel空间交互的部分称之为HAL-HW Abstraction Layer。

HAL其实就是用户空间的驱动程序。如果想要将 Android 在某硬件平台上执行,基本上完成这些驱动程序就行了。其内定义了 Android 对各硬件装置例如显示芯片、声音、数字相机、GPS、GSM 等等的需求。

HAL存在的几个原因:

1、 并不是所有的硬件设备都有标准的linux kernel的接口。

2、 Kernel driver涉及到GPL的版权。某些设备制造商并不原因公开硬件驱动,所以才去HAL方式绕过GPL。

3、 针对某些硬件,Android有一些特殊的需求。

在display部分,HAL的实现code在copybit.c中,应用程序直接操作这些接口即可,具体的接口如下

  1.     struct copybit_context_t *ctx = malloc(sizeof(struct copybit_context_t));  
  2.    
  3.     memset(ctx, 0, sizeof(*ctx));  
  4.    
  5.     ctx->device.common.tag = HARDWARE_DEVICE_TAG;  
  6.    
  7.     ctx->device.common.version = 0;  
  8.    
  9.     ctx->device.common.module = module;  
  10.    
  11.     ctx->device.common.close = close_copybit;  
  12.    
  13.     ctx->device.set_parameter = set_parameter_copybit;//设置参数  
  14.    
  15.     ctx->device.get = get;  
  16.    
  17.     ctx->device.blit = blit_copybit;//传送显示数据  
  18.    
  19.     ctx->device.stretch = stretch_copybit;  
  20.    
  21.     ctx->mAlpha = MDP_ALPHA_NOP;  
  22.    
  23.     ctx->mFlags = 0;  
  24.    
  25.     ctx->mFD = open("/dev/graphics/fb0", O_RDWR, 0);//打开设备  


Kernel Space Display功能介绍

这里的Kernel空间(与Display相关)是Linux平台下的FB设备(参考上图中的红色部分)。下面介绍一下FB设备。

Fb即FrameBuffer的简称。framebuffer 是一种能够提取图形的硬件设备,是用户进入图形界面很好的接口。有了framebuffer,用户的应用程序不需要对底层驱动有深入了解就能够做出很好的 图形。对于用户而言,它和/dev 下面的其他设备没有什么区别,用户可以把

framebuffer 看成一块内存,既可以向这块内存中写入数据,也可以从这块内存中读取数据。它允许上层应用程序在图形模式下直接对显示缓冲区进行读写操作。这种操作是抽象 的,统一的。用户不必关心物理显存的位置、换页机制等等具体细节。这些都是由Framebuffer设备驱动来完成的。

从用户的角度看,帧缓冲设备和其他位于/dev下面的设备类似,它是一个字符设备,通常主设备号是29,次设备号定义帧缓冲的个数。

在LINUX系统中,设备被当作文件来处理,所有的文件包括设备文件,Linux都提供了统一的操作函数接口。上面的结构体就是Linux为FB设备提供的操作函数接口。

1)、读写(read/write)接口,即读写屏幕缓冲区(应用程序不一定会调用该接口)

2)、映射(map)操作(用户空间不能直接访问显存物理空间,需map成虚拟地址后才可以)

由于Linux工作在保护模式,每个应用程序都有自己的虚拟地址空间,在应用程序中是不能直接访问物理缓冲区地址的。为此,Linux在文件操作 file_operations结构中提供了mmap函数,可将文件的内容映射到用户空间。对于帧缓冲设备,则可通过映射操作,可将屏幕缓冲区的物理地址 映射到用户空间的一段虚拟地址中,之后用户就可以通过读写这段虚拟地址访问屏幕缓冲区,在屏幕上绘图了。实际上,使用帧缓冲设备的应用程序都是通过映射操 作来显示图形的。由于映射操作都是由内核来完成,下面我们将看到,帧缓冲驱动留给开发人员的工作并不多

3)、I/O控制:对于帧缓冲设备,对设备文件的ioctl操作可读取/设置显示设备及屏幕的参数,如分辨率,显示颜色数,屏幕大小等等。ioctl的操作是由底层的驱动程序来完成

Note:上述部分请参考文件fbmem.c。

阅读(1056) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~