四 源码分析
memcached-1.2.8版本
4.1 do_slabs_newslab
前面说过每个 slabclass 都拥有一些 slab, 当所有 slab 都用完时, memcached 会给它分配一个新的 slab, do_slabs_newslab 就是做这个工作的.
- //为每一个slab分配内存
- static int do_slabs_newslab(const unsigned int id) {
- slabclass_t *p = &slabclass[id];
- #ifdef ALLOW_SLABS_REASSIGN
- int len = POWER_BLOCK;
- #else
- int len = p->size * p->perslab;
- #endif
- char *ptr;
- //分配内存
- //在第一次分配slab内存时,执行memory_allocate()
- if ((mem_limit && mem_malloced + len > mem_limit && p->slabs > 0) ||
- (grow_slab_list(id) == 0) ||
- ((ptr = memory_allocate((size_t)len)) == 0))
- {
- //
- MEMCACHED_SLABS_SLABCLASS_ALLOCATE_FAILED(id);
- return 0;
- }
- memset(ptr, 0, (size_t)len);
- //指向空闲的item
- p->end_page_ptr = ptr;
- p->end_page_free = p->perslab;
- //slab_list指向的是当前class中分配的各个slab
- p->slab_list[p->slabs++] = ptr;
- mem_malloced += len;
- MEMCACHED_SLABS_SLABCLASS_ALLOCATE(id);
- return 1;
- }
分配一个新的 slab, 必须把该 slab 的首地址安插在 slab_list 数组中, 所以先调用 grow_slab_list 来确保 slab_list数组有足够的容量, 如果容量不足, grow_slab_list 会对 slab_list 扩容. 然后调用 memory_allocate 分配 1M 的内存空间, memory_allocate 从预先分配的内存取下 1M 大小的空闲内存块,作为新的 slab. 最后调整 end_page_ptr, 新分配的 slab 全部都是空闲内存块, 所以 end_page_ptr 指向新 slab 的首地址.这个新 slab 的首地址也被安插在 slab_list 数组中.
4.2 do_slabs_alloc
这个函数从指定的 slabclass, 即 slabclass[id], 分配大小为 size 的内存块供申请者使用.分配的原则是, 优先从 slots 指向的空闲链表中分配, 空闲链表没有, 才从 slab 中分配一个空闲的 chunk.
- /*@null@*/
- //分配一个item
- void *do_slabs_alloc(const size_t size, unsigned int id) {
- slabclass_t *p;
- void *ret = NULL;
- //边界条件判断
- if (id < POWER_SMALLEST || id > power_largest) {
- MEMCACHED_SLABS_ALLOCATE_FAILED(size, 0);
- return NULL;
- }
- //指向slab class
- p = &slabclass[id];
- assert(p->sl_curr == 0 || ((item *)p->slots[p->sl_curr - 1])->slabs_clsid == 0);
- #ifdef USE_SYSTEM_MALLOC
- if (mem_limit && mem_malloced + size > mem_limit) {
- MEMCACHED_SLABS_ALLOCATE_FAILED(size, id);
- return 0;
- }
- mem_malloced += size;
- ret = malloc(size);
- MEMCACHED_SLABS_ALLOCATE(size, id, 0, ret);
- return ret;
- #endif
- /* fail unless we have space at the end of a recently allocated page,
- we have something on our freelist, or we could allocate a new page */
- //当没有空间时,返回ret=NULL
- if (! (p->end_page_ptr != 0 || p->sl_curr != 0 ||
- do_slabs_newslab(id) != 0)) {
- /* We don't have more memory available */
- ret = NULL;
- } else if (p->sl_curr != 0) {
- /* return off our freelist */
- ret = p->slots[--p->sl_curr];
- } else {
- //从空闲的slab中分配一个item
- /* if we recently allocated a whole page, return from that */
- assert(p->end_page_ptr != NULL);
- //指向空闲slab
- ret = p->end_page_ptr;
- if (--p->end_page_free != 0) {
- p->end_page_ptr += p->size;
- } else {
- p->end_page_ptr = 0;
- }
- }
- if (ret) {
- MEMCACHED_SLABS_ALLOCATE(size, id, p->size, ret);
- } else {
- MEMCACHED_SLABS_ALLOCATE_FAILED(size, id);
- }
- return ret;
- }
4.3 do_slabs_free
把 ptr 指向的 item 归还给 slabclass[id]。操作很简单, 把 ptr 指向的 item 挂在 slots 空闲链表的最前面。
- //释放一个item
- void do_slabs_free(void *ptr, const size_t size, unsigned int id) {
- slabclass_t *p;
- assert(((item *)ptr)->slabs_clsid == 0);
- assert(id >= POWER_SMALLEST && id <= power_largest);
- if (id < POWER_SMALLEST || id > power_largest)
- return;
- MEMCACHED_SLABS_FREE(size, id, ptr);
- p = &slabclass[id];
- #ifdef USE_SYSTEM_MALLOC
- mem_malloced -= size;
- free(ptr);
- return;
- #endif
- if (p->sl_curr == p->sl_total) { /* need more space on the free list */
- int new_size = (p->sl_total != 0) ? p->sl_total * 2 : 16; /* 16 is arbitrary */
- void **new_slots = realloc(p->slots, new_size * sizeof(void *));
- if (new_slots == 0)
- return;
- p->slots = new_slots;
- p->sl_total = new_size;
- }
- p->slots[p->sl_curr++] = ptr;
- return;
- }
4.4 do_item_alloc
从 slab 系统分配一个空闲 item
- /*@null@*/
- //nkey------------key的大小
- //nbytes----------value的大小
- item *do_item_alloc(char *key, const size_t nkey, const int flags, const rel_time_t exptime, const int nbytes) {
- uint8_t nsuffix;
- item *it;
- char suffix[40];
- //得到该item的大小=sizeof(item) + nkey + *nsuffix + nbytes;
- size_t ntotal = item_make_header(nkey + 1, flags, nbytes, suffix, &nsuffix);
- //slabs_clsid:返回size大小对应的slabclass索引
- unsigned int id = slabs_clsid(ntotal);
- if (id == 0)
- return 0;
- //从slabclass[id]中分配一个size大小的trunk
- it = slabs_alloc(ntotal, id);
- //当没有空闲的item时,进行LRU计算
- if (it == 0) {
- int tries = 50;
- item *search;
- /* If requested to not push old items out of cache when memory runs out,
- * we're out of luck at this point...
- */
- if (settings.evict_to_free == 0) {
- itemstats[id].outofmemory++;
- return NULL;
- }
- /*
- * try to get one off the right LRU
- * don't necessariuly unlink the tail because it may be locked: refcount>0
- * search up from tail an item with refcount==0 and unlink it; give up after 50
- * tries
- */
- if (tails[id] == 0) {
- itemstats[id].outofmemory++;
- return NULL;
- }
- for (search = tails[id]; tries > 0 && search != NULL; tries--, search=search->prev) {
- //当发现一个item 当前没有被使用(引用计数refcount 为0) ,
- //且其 生存时间已经为0 或生存时间大于现在时间,
- //就果断的把它释放掉。并再次调slabs_alloc()
- if (search->refcount == 0) {
- if (search->exptime == 0 || search->exptime > current_time) {
- itemstats[id].evicted++;
- itemstats[id].evicted_time = current_time - search->time;
- STATS_LOCK();
- stats.evictions++;
- STATS_UNLOCK();
- }
- do_item_unlink(search);
- break;
- }
- }
- it = slabs_alloc(ntotal, id);
- if (it == 0) {
- itemstats[id].outofmemory++;
- /* Last ditch effort. There is a very rare bug which causes
- * refcount leaks. We've fixed most of them, but it still happens,
- * and it may happen in the future.
- * We can reasonably assume no item can stay locked for more than
- * three hours, so if we find one in the tail which is that old,
- * free it anyway.
- */
- tries = 50;
- for (search = tails[id]; tries > 0 && search != NULL; tries--, search=search->prev) {
- if (search->refcount != 0 && search->time + 10800 < current_time) {
- itemstats[id].tailrepairs++;
- search->refcount = 0;
- do_item_unlink(search);
- break;
- }
- }
- it = slabs_alloc(ntotal, id);
- if (it == 0) {
- return NULL;
- }
- }
- }
- assert(it->slabs_clsid == 0);
- it->slabs_clsid = id;
- assert(it != heads[it->slabs_clsid]);
- it->next = it->prev = it->h_next = 0;
- it->refcount = 1; /* the caller will have a reference */
- DEBUG_REFCNT(it, '*');
- it->it_flags = 0;
- it->nkey = nkey;
- it->nbytes = nbytes;
- strcpy(ITEM_key(it), key);
- it->exptime = exptime;
- memcpy(ITEM_suffix(it), suffix, (size_t)nsuffix);
- it->nsuffix = nsuffix;
- return it;
- }
4.5 do_item_link
形成了一个完成的 item 后, 就要把它放入两个数据结构中, 一是 memcached 的哈希表, memcached 运行过程中只有一个哈希表, 二是 item 所在的 slabclass 的 LRU 队列.如 图6 所示, 每个 slabclass 都有一个 LRU 队列。
- //形成了一个完成的 item 后, 就要把它放入两个数据结构中
- //一是 memcached 的哈希表,
- //二是 item 所在的 slabclass 的 LRU 队列
- int do_item_link(item *it) {
- MEMCACHED_ITEM_LINK(ITEM_key(it), it->nbytes);
- assert((it->it_flags & (ITEM_LINKED|ITEM_SLABBED)) == 0);
- assert(it->nbytes < (1024 * 1024)); /* 1MB max size */
- it->it_flags |= ITEM_LINKED;
- it->time = current_time;
- //加入到hashtable中
- assoc_insert(it);
- STATS_LOCK();
- stats.curr_bytes += ITEM_ntotal(it);
- stats.curr_items += 1;
- stats.total_items += 1;
- STATS_UNLOCK();
- /* Allocate a new CAS ID on link. */
- it->cas_id = get_cas_id();
- //加入到LRU队列中
- //新元素放入到头部,旧的放入到尾部。
- item_link_q(it);
- return 1;
- }
4.6 do_item_unlink
do_item_unlink 与 do_item_unlink 做的工作相反, 把 item 从哈希表和 LRU 队列中删除,而且还释放掉 item 所占的内存 (其实只是把 item 放到空闲链表中).
- void do_item_unlink(item *it) {
- MEMCACHED_ITEM_UNLINK(ITEM_key(it), it->nbytes);
- if ((it->it_flags & ITEM_LINKED) != 0) {
- it->it_flags &= ~ITEM_LINKED;
- STATS_LOCK();
- stats.curr_bytes -= ITEM_ntotal(it);
- stats.curr_items -= 1;
- STATS_UNLOCK();
- //从hashtable中删除
- assoc_delete(ITEM_key(it), it->nkey);
- //从LRU队列中删除
- item_unlink_q(it);
- if (it->refcount == 0) item_free(it);
- }
- }
4.7 item_get
根据 key 找对应的 item, 为了加快查找速度, memcached 使用一个哈希表对 key 和 item 所在的内存地址做映射. item_get 直接从哈希表中查找就可以了, 当然找到了还要检查 item 是否超时. 超时了的 item将从哈希表和 LRU 队列中删除掉。
- item *item_get(const char *key, const size_t nkey) {
- return item_get_notedeleted(key, nkey, 0);
- }
阅读(1577) | 评论(1) | 转发(0) |