Chinaunix首页 | 论坛 | 博客
  • 博客访问: 666479
  • 博文数量: 156
  • 博客积分: 6010
  • 博客等级: 准将
  • 技术积分: 1201
  • 用 户 组: 普通用户
  • 注册时间: 2007-05-05 20:08
文章分类

全部博文(156)

文章存档

2010年(13)

2008年(39)

2007年(104)

我的朋友

分类: LINUX

2007-07-18 20:36:40

Before main() 分析


作者:alert7                      alert7@xfocus.org
             >

主页: http://www.xfocus.org
时间: 2001-9-25


★ 前言

本文分析了在main()之前的ELF程序流程,试图让您更清楚的把握程序的流程的脉络走向。
从而更深入的了解ELF。不正确之处,还请斧正。


★ 综述

ELF的可执行文件与共享库在结构上非常类似,它们具有一张程序段表,用来描述这些段如何映射到进程空间.
对于可执行文件来说,段的加载位置是固定的,程序段表中如实反映了段的加载地址.对于共享库来说,段的加
载位置是浮动的,位置无关的,程序段表反映的是以0作为基准地址的相对加载地址.尽管共享库的连接是不
充分的,为了便于测试动态链接器,Linux允许直接加载共享库运行.如果应用程序具有动态链接器的描述段,
内核在完成程序段加载后,紧接着加载动态链接器,并且启动动态链接器的入口.如果没有动态链接器的描述段,
就直接交给用户程序入口。
上述这部分请参考:linuxforum论坛上opera写的《分析ELF的加载过程》

在控制权交给动态链接器的入口后,首先调用_dl_start函数获得真实的程序入口(注:该入口地址
不是main的地址,也就是说一般程序的入口不是main),然后循环调用每个共享object的初始化函数,
接着跳转到真实的程序入口,一般为_start(程序中的_start)的一个例程,该例程压入一些参数到堆栈,
就直接调用__libc_start_main函数。在__libc_start_main函数中替动态连接器和自己程序安排
destructor,并运行程序的初始化函数。然后才把控制权交给main()函数。



★ main()之前流程

下面就是动态链接器的入口。
/* Initial entry point code for the dynamic linker.
   The C function `_dl_start' is the real entry point;
   its return value is the user program's entry point.  */

#define RTLD_START asm ("\
.text\n\
.globl _start\n\
.globl _dl_start_user\n\
_start:\n\
pushl %esp\n\
call _dl_start\n\/*该函数返回时候,%eax中存放着user entry point address*/
popl %ebx\n\/*%ebx放着是esp的内容*/
_dl_start_user:\n\
# Save the user entry point address in %edi.\n\
movl %eax, %edi\n\/*入口地址放在%edi*/

# Point %ebx at the GOT.
call 0f\n\
0: popl %ebx\n\
addl $_GLOBAL_OFFSET_TABLE_+[.-0b], %ebx\n\

# Store the highest stack address\n\
movl __libc_stack_end@GOT(%ebx), %eax\n\
movl %esp, (%eax)\n\/*把栈顶%esp放到GOT的__libc_stack_end中*/

# See if we were run as a command with the executable file\n\
# name as an extra leading argument.\n\
movl _dl_skip_args@GOT(%ebx), %eax\n\
movl (%eax), %eax\n\

# Pop the original argument count.\n\
popl %ecx\n\

# Subtract _dl_skip_args from it.\n\
subl %eax, %ecx\n\

# Adjust the stack pointer to skip _dl_skip_args words.\n\
leal (%esp,%eax,4), %esp\n\

# Push back the modified argument count.\n\
pushl %ecx\n\

# Push the searchlist of the main object as argument in\n\
# _dl_init_next call below.\n\
movl _dl_main_searchlist@GOT(%ebx), %eax\n\
movl (%eax), %esi\n\
0: movl %esi,%eax\n\

# Call _dl_init_next to return the address of an initializer\n\
# function to run.\n\
call _dl_init_next@PLT\n\/*该函数返回初始化函数的地址,返回地址放在%eax中*/

# Check for zero return, when out of initializers.\n\
testl %eax, %eax\n\
jz 1f\n\

# Call the shared object initializer function.\n\
# NOTE: We depend only on the registers (%ebx, %esi and %edi)\n\
# and the return address pushed by this call;\n\
# the initializer is called with the stack just\n\
# as it appears on entry, and it is free to move\n\
# the stack around, as long as it winds up jumping to\n\
# the return address on the top of the stack.\n\
call *%eax\n\/*调用共享object初始化函数*/

# Loop to call _dl_init_next for the next initializer.\n\
jmp 0b\n\

1: # Clear the startup flag.\n\
movl _dl_starting_up@GOT(%ebx), %eax\n\
movl $0, (%eax)\n\

# Pass our finalizer function to the user in %edx, as per ELF ABI.\n\
movl _dl_fini@GOT(%ebx), %edx\n\

# Jump to the user's entry point.\n\
jmp *%edi\n\
.previous\n\
");


sysdeps\i386\start.s中
user's entry也就是下面的_start例程

/* This is the canonical entry point, usually the first thing in the text
   segment.  The SVR4/i386 ABI (pages 3-31, 3-32) says that when the entry
   point runs, most registers' values are unspecified, except for:

   %edx Contains a function pointer to be registered with `atexit'.
   This is how the dynamic linker arranges to have DT_FINI
functions called for shared libraries that have been loaded
before this code runs.

   %esp The stack contains the arguments and environment:
   0(%esp) argc
4(%esp) argv[0]
...
(4*argc)(%esp) NULL
(4*(argc+1))(%esp) envp[0]
...
NULL
*/

.text
.globl _start
_start:
/* Clear the frame pointer.  The ABI suggests this be done, to mark
   the outermost frame obviously.  */
xorl %ebp, %ebp

/* Extract the arguments as encoded on the stack and set up
   the arguments for `main': argc, argv.  envp will be determined
   later in __libc_start_main.  */
popl %esi /* Pop the argument count.  */
movl %esp, %ecx /* argv starts just at the current stack top.*/

/* Before pushing the arguments align the stack to a double word
   boundary to avoid penalties from misaligned accesses.  Thanks
   to Edward Seidl for pointing this out.  */
andl $0xfffffff8, %esp
pushl %eax /* Push garbage because we allocate
   28 more bytes.  */

/* Provide the highest stack address to the user code (for stacks
   which grow downwards).  */
pushl %esp

pushl %edx /* Push address of the shared library
   termination function.  */

/* Push address of our own entry points to .fini and .init.  */
pushl $_fini
pushl $_init

pushl %ecx /* Push second argument: argv.  */
pushl %esi /* Push first argument: argc.  */

pushl $main

/* Call the user's main function, and exit with its value.
   But let the libc call main.    */
call __libc_start_main

hlt /* Crash if somehow `exit' does return.  */



__libc_start_main在sysdeps\generic\libc_start.c中
假设定义的是PIC的代码。
struct startup_info
{
  void *sda_base;
  int (*main) (int, char **, char **, void *);
  int (*init) (int, char **, char **, void *);
  void (*fini) (void);
};

int
__libc_start_main (int argc, char **argv, char **envp,
   void *auxvec, void (*rtld_fini) (void),
   struct startup_info *stinfo,
   char **stack_on_entry)
{

  /* the PPC SVR4 ABI says that the top thing on the stack will
     be a NULL pointer, so if not we assume that we're being called
     as a statically-linked program by Linux... */
  if (*stack_on_entry != NULL)
    {
      /* ...in which case, we have argc as the top thing on the
stack, followed by argv (NULL-terminated), envp (likewise),
and the auxilary vector.  */
      argc = *(int *) stack_on_entry;
      argv = stack_on_entry + 1;
      envp = argv + argc + 1;
      auxvec = envp;
      while (*(char **) auxvec != NULL)
++auxvec;
      ++auxvec;
      rtld_fini = NULL;
    }

  /* Store something that has some relationship to the end of the
     stack, for backtraces.  This variable should be thread-specific.  */
  __libc_stack_end = stack_on_entry + 4;

  /* Set the global _environ variable correctly.  */
  __environ = envp;

  /* Register the destructor of the dynamic linker if there is any.  */
  if (rtld_fini != NULL)
    atexit (rtld_fini);/*替动态连接器安排destructor*/

  /* Call the initializer of the libc.  */

  __libc_init_first (argc, argv, envp);/*一个空函数*/

  /* Register the destructor of the program, if any.  */
  if (stinfo->fini)
    atexit (stinfo->fini);/*安排程序自己的destructor*/

  /* Call the initializer of the program, if any.  */

  /*运行程序的初始化函数*/
  if (stinfo->init)
    stinfo->init (argc, argv, __environ, auxvec);

/*运行程序main函数,到此,控制权才交给我们一般所说的程序入口*/
  exit (stinfo->main (argc, argv, __environ, auxvec));

}



void
__libc_init_first (int argc __attribute__ ((unused)), ...)
{
}

int
atexit (void (*func) (void))
{
  struct exit_function *new = __new_exitfn ();

  if (new == NULL)
    return -1;

  new->flavor = ef_at;
  new->func.at = func;
  return 0;
}


/* Run initializers for MAP and its dependencies, in inverse dependency
   order (that is, leaf nodes first).  */

ElfW(Addr)
internal_function
_dl_init_next (struct r_scope_elem *searchlist)
{
  unsigned int i;

  /* The search list for symbol lookup is a flat list in top-down
     dependency order, so processing that list from back to front gets us
     breadth-first leaf-to-root order.  */

  i = searchlist->r_nlist;
  while (i-- > 0)
    {
      struct link_map *l = searchlist->r_list[i];

      if (l->l_init_called)
/* This object is all done.  */
continue;

      if (l->l_init_running)
{
  /* This object's initializer was just running.
     Now mark it as having run, so this object
     will be skipped in the future.  */
  l->l_init_running = 0;
  l->l_init_called = 1;
  continue;
}

      if (l->l_info[DT_INIT]
  && (l->l_name[0] != '\0' || l->l_type != lt_executable))
{
  /* Run this object's initializer.  */
  l->l_init_running = 1;

  /* Print a debug message if wanted.  */
  if (_dl_debug_impcalls)
    _dl_debug_message (1, "\ncalling init: ",
l->l_name[0] ? l->l_name : _dl_argv[0],
"\n\n", NULL);

  /*共享库的基地址+init在基地址中的偏移量*/
  return l->l_addr + l->l_info[DT_INIT]->d_un.d_ptr;
 
}

      /* No initializer for this object.
Mark it so we will skip it in the future.  */
      l->l_init_called = 1;
    }


  /* Notify the debugger all new objects are now ready to go.  */
  _r_debug.r_state = RT_CONSISTENT;
  _dl_debug_state ();

  return 0;
}
在main()之前的程序流程看试有点简单,但正在运行的时候还是比较复杂的
(自己用GBD跟踪下就知道了),因为一般的程序都需要涉及到PLT,GOT标号的
重定位。弄清楚这个对ELF由为重要,以后有机会再补上一篇吧。


★ 手动确定程序和动态连接器的入口

[alert7@redhat62 alert7]$ cat helo.c
#include
int main(int argc,char **argv)
{
printf("hello\n");
return 0;
}

[alert7@redhat62 alert7]$ gcc -o helo helo.c
[alert7@redhat62 alert7]$ readelf -h helo
ELF Header:
  Magic:   7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
  Class:                             ELF32
  Data:                              2's complement, little endian
  Version:                           1 (current)
  OS/ABI:                            UNIX - System V
  ABI Version:                       0
  Type:                              EXEC (Executable file)
  Machine:                           Intel 80386
  Version:                           0x1
  Entry point address:               0x8048320
  Start of program headers:          52 (bytes into file)
  Start of section headers:          8848 (bytes into file)
  Flags:                             0x0
  Size of this header:               52 (bytes)
  Size of program headers:           32 (bytes)
  Number of program headers:         6
  Size of section headers:           40 (bytes)
  Number of section headers:         29
  Section header string table index: 26
在这里我们看到程序的入口为0x8048320,可以看看是否为main函数。

[alert7@redhat62 alert7]$ gdb -q helo
(gdb) disass 0x8048320
Dump of assembler code for function _start:
0x8048320 <_start>:     xor    %ebp,%ebp
0x8048322 <_start+2>:   pop    %esi
0x8048323 <_start+3>:   mov    %esp,%ecx
0x8048325 <_start+5>:   and    $0xfffffff8,%esp
0x8048328 <_start+8>:   push   %eax
0x8048329 <_start+9>:   push   %esp
0x804832a <_start+10>:  push   %edx
0x804832b <_start+11>:  push   $0x804841c
0x8048330 <_start+16>:  push   $0x8048298
0x8048335 <_start+21>:  push   %ecx
0x8048336 <_start+22>:  push   %esi
0x8048337 <_start+23>:  push   $0x80483d0
0x804833c <_start+28>:  call   0x80482f8 <__libc_start_main>
0x8048341 <_start+33>:  hlt
0x8048342 <_start+34>:  nop
End of assembler dump.
呵呵,不是main吧,程序的入口是个_start例程。

再来看动态连接器的入口是多少
[alert7@redhat62 alert7]$ ldd helo
        libc.so.6 => /lib/libc.so.6 (0x40018000)
        /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
动态连接器ld-linux.so.2加载到进程地址空间0x40000000。

[alert7@redhat62 alert7]$ readelf -h /lib/ld-linux.so.2
ELF Header:
  Magic:   7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
  Class:                             ELF32
  Data:                              2's complement, little endian
  Version:                           1 (current)
  OS/ABI:                            UNIX - System V
  ABI Version:                       0
  Type:                              DYN (Shared object file)
  Machine:                           Intel 80386
  Version:                           0x1
  Entry point address:               0x1990
  Start of program headers:          52 (bytes into file)
  Start of section headers:          328916 (bytes into file)
  Flags:                             0x0
  Size of this header:               52 (bytes)
  Size of program headers:           32 (bytes)
  Number of program headers:         3
  Size of section headers:           40 (bytes)
  Number of section headers:         23
  Section header string table index: 20
共享object入口地址为0x1990。加上整个ld-linux.so.2被加载到进程地址空间0x40000000。
那么动态连接器的入口地址为0x1990+0x40000000=0x40001990。

用户空间执行的第一条指令地址就是0x40001990,既上面#define RTLD_START的开始。
阅读(1897) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~