分类: C/C++
2011-11-19 16:26:00
因为编译器按照文件方式编译,所以编译A.cpp时,并不知道B.cpp中定义了iRI。
也就是说:文件中定义的全局变量的可见性扩展到整个程序是在链接完成之后,而在编译阶段,他们的可见性仍局限于各自的文件。
解决方案如下:
编译器的目光不够长远,编译器没有能够意识到,某个变量符号虽然不是本文件定义的,但是它可能是在其它的文件中定义的。
虽然编译器不够远见,但是我们可以给它提示,帮助它来解决上面出现的问题。这就是extern的作用了。
extern的原理很简单,就是告诉编译器:“你现在编译的文件中,有一个标识符虽然没有在本文件中定义,但是它是在别的文件中定义的全局变量,你要放行!”
//A.cpp:
extern int iRI;
int main()
{
iRI = 64;
//.....
}
//B.cpp
int iRI;
这样编译就能够通过。
extern int iRI; //并未分配空间,只是通知编译器,在其它文件定义过iRI。
extern 作用2:在C++文件中调用C方式编译的函数
C方式编译和C++方式编译
相对于C,C++中新增了诸如重载等新特性。所以全局变量和函数名编译后的命名方式有很大区别。
int a;
int functionA();
对于C方式编译:
int a;=> _a
int functionA(); => _functionA
对于C++方式编译:
int a; =>xx@xxx@a
int functionA(); =>
可以看出,因为要支持重载,所以C++方式编译下,生成的全局变量名和函数名复杂很多。与C方式编译的加一个下划线不同。
于是就有下面几种情况:
例2:C++调用C++定义的全局变量
//A.cpp:
extern int iRI;
int main()
{
iRI = 64;
//.....
}
//B.cpp
int iRI;
gcc A.cpp -c
gcc B.cpp -c
gcc A.o B.o -o test
那么在编译链接时都没问题。
例3:C++调用C定义的全局变量
//A.cpp:
extern int iRI;
int main()
{
iRI = 64;
//.....
}
//B.c
int iRI;
编译时没有问题,
gcc A.cpp -c
gcc B.c -c
但链接时,gcc B.o A.o -o test
则会报iRI没有定义。为什么呢?
因为gcc看到A.cpp,就使用C++方式编译,看到B.c,就使用C方式编译。
所以在A.cpp中的iRI=>XXX@XXX_iRI;
而B.c中iRI=〉_iRI;
所以在链接时,A.cpp想找到,当然找不到。所以就需要告诉编译器,iRI是使用C方式编译的。
//A.cpp:
extern "C"
{
int iRI;
}
int main()
{ iRI = 64;
//.....
}
//B.c
int iRI;
这样,当编译A.cpp时,编译器就知道iRI为C方式编译的。就会使用 _iRI。这样B.c提供的_iRI就可以被A.cpp找到了。
例4:C++调用C定义的function
//A.cpp
extern int functionA();
int main()
{
functionA();
}
//B.c
int functionA()
{
//....
}
gcc A.cpp -c
gcc B.c -c
都没有问题。但同样的,gcc A.o B.o -o test
则报错,找不到functionA();
这是因为gcc将A.cpp认为是C++方式编译,B.c是C方式编译。
所以functionA在B.c中为:_functionA. 在A.cpp中为:
所以在链接时A.cpp找不到.
于是需要通知编译器,functionA()是C方式编译命名的。
//A.cpp
extern "C"
{
int functionA();
}
int main()
{
functionA();
}
//B.c
int functionA()
{
//....
}
于是,编译链接都可以通过。
总结:
extern "C"
{
functionA();
}//不止是声明,并且还指出:这个function请用C方式编译。所以不需要再次extern.
extern"C"
{
extern functionA();
}//这样做没什么太大意义。