#define LIST_INCREMENT 2 // 线性表存储空间的分配增量
struct SqList
{ ElemType *elem; // 存储空间基址
int length; // 当前长度
int listsize; // 当前分配的存储容量(以sizeof(ElemType)为单位)
};
void InitList(SqList &L) // 算法2.3
{ // 操作结果:构造一个空的顺序线性表L
L.elem=(ElemType*)malloc(LIST_INIT_SIZE*sizeof(ElemType));
if(!L.elem) // 存储分配失败
exit(OVERFLOW);
L.length=0; // 空表长度为0
L.listsize=LIST_INIT_SIZE; // 初始存储容量
}
void DestroyList(SqList &L)
{ // 初始条件:顺序线性表L已存在。操作结果:销毁顺序线性表L
free(L.elem); // 释放L.elem所指的存储空间
L.elem=NULL; // L.elem不再指向任何存储单元
L.length=0;
L.listsize=0;
}
void ClearList(SqList &L)
{ // 初始条件:顺序线性表L已存在。操作结果:将L重置为空表
L.length=0;
}
Status ListEmpty(SqList L)
{ // 初始条件:顺序线性表L已存在。
// 操作结果:若L为空表,则返回TRUE;否则返回FALSE
if(L.length==0)
return TRUE;
else
return FALSE;
}
int ListLength(SqList L)
{ // 初始条件:顺序线性表L已存在。操作结果:返回L中数据元素的个数
return L.length;
}
Status GetElem(SqList L,int i,ElemType &e)
{ // 初始条件:顺序线性表L已存在,1≤i≤ListLength(L)
// 操作结果:用e返回L中第i个数据元素的值
if(i<1||i>L.length) // i不在表L的范围之内
return ERROR;
e=*(L.elem+i-1); // 将表L的第i个元素的值赋给e
return OK;
}
int LocateElem(SqList L,ElemType e,Status(*compare)(ElemType,ElemType))
{ // 初始条件:顺序线性表L已存在,compare()是数据元素判定函数(满足为1,否则为0)
// 操作结果:返回L中第1个与e满足关系compare()的数据元素的位序。
// 若这样的数据元素不存在,则返回值为0。算法2.6
int i=1; // i的初值为第1个元素的位序
ElemType *p=L.elem; // p的初值为第1个元素的存储位置
while(i<=L.length&&!compare(*p++,e)) // i未超出表的范围且未找到满足关系的数据元素
++i; // 继续向后找
if(i<=L.length) // 找到满足关系的数据元素
return i; // 返回其位序
else // 未找到满足关系的数据元素
return 0;
}
Status PriorElem(SqList L,ElemType cur_e,ElemType &pre_e)
{ // 初始条件:顺序线性表L已存在
// 操作结果:若cur_e是L的数据元素,且不是第一个,则用pre_e返回它的前驱;
// 否则操作失败,pre_e无定义
int i=2; // 从第2个元素开始
ElemType *p=L.elem+1; // p指向第2个元素
while(i<=L.length&&*p!=cur_e) // i未超出表的范围且未找到值为cur_e的元素
{ p++; // p指向下一个元素
i++; // 计数加1
}
if(i>L.length) // 到表结束处还未找到值为cur_e的元素
return ERROR; // 操作失败
else // 找到值为cur_e的元素,并由p指向其
{ pre_e=*--p; // p指向前一个元素(cur_e的前驱),将所指元素的值赋给pre_e
return OK; // 操作成功
}
}
Status NextElem(SqList L,ElemType cur_e,ElemType &next_e)
{ // 初始条件:顺序线性表L已存在
// 操作结果:若cur_e是L的数据元素,且不是最后一个,则用next_e返回它的后继,
// 否则操作失败,next_e无定义
int i=1; // 从第1个元素开始
ElemType *p=L.elem; // p指向第1个元素
while(i<L.length&&*p!=cur_e) // i未到表尾且未找到值为cur_e的元素
{ p++; // p指向下一个元素
i++; // 计数加1
}
if(i==L.length) // 到表尾的前一个元素还未找到值为cur_e的元素
return ERROR; // 操作失败
else // 找到值为cur_e的元素,并由p指向其
{ next_e=*++p; // p指向下一个元素(cur_e的后继),将所指元素的值赋给next _e
return OK; // 操作成功
}
}
Status ListInsert(SqList &L,int i,ElemType e) // 算法2.4
{ // 初始条件:顺序线性表L已存在,1≤i≤ListLength(L)+1
// 操作结果:在L中第i个位置之前插入新的数据元素e,L的长度加1
ElemType *newbase,*q,*p;
if(i<1||i>L.length+1) // i值不合法
return ERROR;
if(L.length==L.listsize) // 当前存储空间已满,增加分配,修改
{ newbase=(ElemType*)realloc(L.elem,(L.listsize+LIST_INCREMENT)*sizeof(ElemType));
if(!newbase) // 存储分配失败
exit(OVERFLOW);
L.elem=newbase; // 新基址赋给L.elem
L.listsize+=LIST_INCREMENT; // 增加存储容量
}
q=L.elem+i-1; // q为插入位置
for(p=L.elem+L.length-1;p>=q;--p) // 插入位置及之后的元素右移(由表尾元素开始移)
*(p+1)=*p;
*q=e; // 插入e
++L.length; // 表长增1
return OK;
}
Status ListDelete(SqList &L,int i,ElemType &e) // 算法2.5
{ // 初始条件:顺序线性表L已存在,1≤i≤ListLength(L)
// 操作结果:删除L的第i个数据元素,并用e返回其值,L的长度减1
ElemType *p,*q;
if(i<1||i>L.length) // i值不合法
return ERROR;
p=L.elem+i-1; // p为被删除元素的位置
e=*p; // 被删除元素的值赋给e
q=L.elem+L.length-1; // q为表尾元素的位置
for(++p;p<=q;++p) // 被删除元素之后的元素左移(由被删除元素的后继元素开始移)
*(p-1)=*p;
L.length--; // 表长减1
return OK;
}
void ListTraverse(SqList L,void(*visit)(ElemType&))
{ // 初始条件:顺序线性表L已存在
// 操作结果:依次对L的每个数据元素调用函数visit()
// visit()的形参加'&',表明可通过调用visit()改变元素的值
ElemType *p=L.elem; // p指向第1个元素
int i;
for(i=1;i<=L.length;i++) // 从表L的第1个元素到最后1个元素
visit(*p++); // 对每个数据元素调用visit()
printf("\n");
}