分类: LINUX
2011-02-24 19:05:44
墙上时钟:
也就是实际时间。
系统时间:
自系统启动开始所经过的时间。
时钟中断:
内核会周期性的产生时钟中断,在中断处理函数中执行一些与时间相关的操作,如更新时间,进程调度,检查时间片等。
节拍率:
在linux内核中,通过编程定义节拍率,也就是HZ。每1/HZ秒发生一次时钟中断。在ARM中,节拍率被定义为100,节拍率越大,系统进入时钟中断就越频繁,时间和进程调度等操作就越准确,但对系统的负担也就越大。
jiffies:
该32位(unsigned long)的全局变量用来记录自系统启动以来产生的节拍的总数。系统启动时清零,每次时钟中断加一。所以,一秒内的时钟中断次数(或者说jiffies一秒内增加的值)也就等于HZ。如果系统时间以秒来表示,那就等于jiffies/HZ秒。
实时时钟(RTC):
体系结构中用于维持系统时间的设备,就像电脑的BIOS,需要在关机状态时通过电池供电。系统启动时通过读取RTC来初始化墙上时钟。
在ARM下可以看到如下定义:
/*arch/arm/include/asm/param.h*/
13 #ifdef __KERNEL__
14 # define HZ CONFIG_HZ/* Internal kernel timer frequency */
15 # define USER_HZ 100/* User interfaces are in "ticks" */
16 # define CLOCKS_PER_SEC (USER_HZ) /* like times() */
17 #else
18 # define HZ 100
19 #endif
可以看到:
1、用户空间但到的HZ是100。
2、内核空间的HZ有CONFIG_HZ和__KERNEL__决定,而CONFIG_HZ在.config中定义。
在看另外一处,查看自己编译内核时使用的.config文件:
/*linux-2.6.29/.config */
275 CONFIG_HZ=200
所以,我的当前开发板的HZ定义为200,不信的话,可以自己打印来看看。
二、内核延时内核提供了很多延时的方法,接下来一一介绍。
2.1、忙等待:
这是最简单的延时方法,直接来段代码说明:
unsigned long delay = jiffies + 5*HZ //5*HZ = 5秒
while(delay < jiffies)
;
内核也有另外一种版本:
unsigned long delay = jiffies + 5*HZ //5*HZ = 5秒
while(delay < jiffies)
cpu_relax; //但ARM下cpu_relax是空语句。
这代码很简单,每时每刻查询当前时间(jiffies)是否已经超出延时(delay)。在还没到达延时的情况下,处理器只能原地旋转等待,一直耗费CPU资源。
所以有了改进版:让出处理器。
unsigned long delay = jiffies + 5*HZ //5*HZ = 5秒
while(delay < jiffies)
schedule(); //让出处理器
虽然当前进程让出处理器,但是它仍在运行队列中,如果系统中只有它这个可运行进程,那么该进程又会重新被执行。那就是说,在延时这段时间内,内核重复一个操作,调度进程。所以我把这个也理解成忙等待。
说一些题外话,jiffies是一个unsigned long类型的全局变量,当加到4294967295时溢出,从零开始继续增加,这也叫回绕。
由于回绕的问题,内核提供了四个宏来比较超时,它们能正确的处理节拍数回绕情况。
/*linux/jiffies.h */
106 #definetime_after(a,b) \
107 (typecheck(unsigned long, a) && \
108 typecheck(unsigned long, b) && \
109 ((long)(b) - (long)(a) < 0))
110 #definetime_before(a,b) time_after(b,a)
111
112 #definetime_after_eq(a,b) \
113 (typecheck(unsigned long, a) && \
114 typecheck(unsigned long, b) && \
115 ((long)(a) - (long)(b) >= 0))
116 #definetime_before_eq(a,b)time_after_eq(b,a)
至于为什么能防止回绕,我也纠结了一个上午,该博客有详细的讲解,顺便感叹一下牛人无处不在:
http://blog.csdn.net/yuanlulu/archive/2010/11/18/6019862.aspx
上面的代码修改一下:
unsigned long delay = jiffies + 5*HZ //5*HZ = 5秒
while(time_before(jiffies, delay))
schedule(); //让出处理器
2.2、短延时:
忙等待的最小时间间隔是1/HZ秒,假设HZ的值为100,那忙等待的时间间隔最小也只是10ms。但在有些内核代码中,不但需要很短的延时,而且时间精确度较高。
#include
void ndelay(unsigned long nsecs);
void udelay(unsigned long usecs);
void mdelay(unsigned long msecs);
udelay(150); //延时150微秒
说明一下:
1、一般的体系架构都没办法达到纳秒级的延时标准。
2、udelay的实现是靠执行次数循环达到延时效果。内核知道处理器一秒能执行多少次循环,udelay根据执行的延时时间在1s中的比例,得出需要延时的次数来达到延时。
3、mdelay是基于udelay实现的。超过1ms的延时不要使用udelay,建议使用mdelay。
4、不管是哪种延时,真正的延时至少会达到要求的延时时间,但可能更长。
5、它们也属于忙等待的一种,不过延时时间较短。
2.3、schedule_timeout():
更理想的延时方法是使用schedule_timeout()函数,该方法让需要延时的任务睡眠,直到指定延时时间耗尽后重新执行。当然它也不能保证睡眠时间和延时时间一致,只能尽量接近。
用法如下:
/*将任务设置为可中断睡眠状态,当然你也可以设置为TASK_UNINTERRUPTIBLE,但不建议*/
set_current_state(TASK_INTERRUPTIBLE);
/*小睡一会,s秒后唤醒*/
schedule_timeout(s*HZ);
2.4、设置超时时间,在等待队列中睡眠:
在字符设备驱动的时候已经介绍过等待队列的基本原理:当任务放在等待队列中,然后调度其他进程执行,一旦等待的事情成立,调用wake_up唤醒等待队列中的进程并重新投入运行。
上面讲得是函数wait_event_interruptible。在这个函数的基础上,增加了延时功能。如果在特定延时时间内等待事件到来,那任务被唤醒。否则,等到特定延时时间耗尽后事件还没发生,那也得唤醒任务。
/*linux/wait.h*/
wait_event_interruptible_timeout(wq, condition, timeout)
使用大概如下:
wait_queue_head_t wait;
init_qaitqueue_head(&wait);
wait_event_interruptible_timeout(wait, 0, s*HZ); //延时s秒
上面的调用condition为0,那表示等待时间永远不成立,只有时间到才能唤醒,相当于:
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(s*HZ);
而且,schedule_timeout还少了等待队列创建的操作,减少内核负担。所以,如果不是既要等待延时,又要等待时间发生,那就没必要用到等待队列的延时了。
三、总结这一节,简单介绍了内核时间的概念,并知道了几种常用的延时方法。
最后提醒一下,在持有锁和禁止中断时使用忙等待,因为这样会降低系统的速度和性能。