分类: LINUX
2011-05-16 09:48:11
一、底层数据结构:kobject,kset
先说说模型的意义:
总体来说是为了系统地管理所有设备。
kobject
结合面向对象的思维。这个kobject属于最基础的结构,也就是最高抽象层(有点像java中的Cobject类)。任何一个设备模型如总线,设备,驱动都属于一个kobject 。在实现上这种派生关系就是在结构体中包含一个kobject的变量。
这个在层次上处理最顶层的kobject结构提供了所有模型需要的最基本的功能:
1 引用计数 用于内核维护其存在与消亡
2 sysfs表示 每个sys/下的对象对应着一个kobject。
3 热拔插事件处理。 处理设备的热拔插事件。
Kobjects 在内核中对应有一套申请,初始化,添加,注册,计数操作,释放等函数
struct kobject {
const char * k_name; 名
char name[KOBJ_NAME_LEN];
struct kref kref; 计数
struct list_head entry; 用于连接到同类kobjects的链表
struct kobject * parent; 用于实现层次,指向其父对象。
struct kset * kset; 用于实现层次,所属的集合
struct kobj_type * ktype; 指向对象的类型。
struct dentry * dentry; 指示在sysfs 中的目录项
wait_queue_head_t poll;
}; (linux 2.6.18)
Kset 和kobj_type
Kset 在概念上是一个集合或者叫容器。实现了对象的层次。所有属于一个ksets的对象(kobject)的parent都指向该ksets的kobj.同时这个对象都连接到kset 的list表上。同时位于ksets层次之上的是subsys,在最新的内核中已经取消subsys,因为它本质上也就是一个ksets。Kset有一套类似kobject的操作,实现上只是进一步调用其自身kobj的相应操作,毕竟ksets本质上也是一个kobject。
最后 属于同一个集合的对象可以拥有共同的属性:ktype 。
struct kobj_type {
void (*release)(struct kobject *);
struct sysfs_ops * sysfs_ops;
struct attribute ** default_attrs;
};
所谓的属性更具体一点说就是一些键值对。并且在sysfs_ops中的show函数被文件系统调用来显示sys/下面对应入口各属性的值。
如此 ,kobjects与ksets实现层次树的底层骨架。
进一步地,通过封装这些底层结构来实现上层的设备驱动模型。
内核设备驱动模型层次划分三个方面:总线,设备,驱动。
二、linux设备模型层次关系:bus_type,device,device_driver
基本关系简要的概括如下:
驱动核心可以注册多种类型的总线。
每种总线下面可以挂载许多设备。(通过kset devices)
每种总线下可以用很多设备驱动。(通过包含一个kset drivers)}
每个驱动可以处理一组设备。
这种基本关系的建立源于实际系统中各种总线,设备,驱动结构的抽象。
下面看看三者数据结构的定义。
首先是总线,bus_type.
struct bus_type {
const char * name;
struct subsystem subsys;//代表自身
struct kset drivers; //当前总线的设备驱动集合
struct kset devices; //所有设备集合
struct klist klist_devices;
struct klist klist_drivers;
struct bus_attribute * bus_attrs;//总线属性
struct device_attribute * dev_attrs;//设备属性
struct driver_attribute * drv_attrs;
int (*match)(struct device * dev, struct device_driver * drv);//设备驱动匹配函数
int (*uevent)(struct device *dev, char **envp,
int num_envp, char *buffer, int buffer_size);//热拔插事件
int (*probe)(struct device * dev);
int (*remove)(struct device * dev);
void (*shutdown)(struct device * dev);
int (*suspend)(struct device * dev, pm_message_t state);
int (*resume)(struct device * dev);
};
这是2.6.18的定义。源码能说明一切。下面是设备device的定义:
struct device {
struct device * parent; //父设备,一般一个bus也对应一个设备。
struct kobject kobj;//代表自身
char bus_id[BUS_ID_SIZE];
struct bus_type * bus; /* 所属的总线 */
struct device_driver *driver; /* 匹配的驱动*/
void *driver_data; /* data private to the driver 指向驱动 */
void *platform_data; /* Platform specific data,由驱动定义并使用*/
///更多字段忽略了
};
下面是设备驱动定义:
struct device_driver {
const char * name;
struct bus_type * bus;//所属总线
struct completion unloaded;
struct kobject kobj;//代表自身
struct klist klist_devices;//设备列表
struct klist_node knode_bus;
struct module * owner;
int (*probe) (struct device * dev);
int (*remove) (struct device * dev);
void (*shutdown) (struct device * dev);
int (*suspend) (struct device * dev, pm_message_t state);
int (*resume) (struct device * dev);
};
OK。基本的东西弄明白了。通过PCI驱动中设备模型的实例来看看细节。
三、集成:PCI设备驱动模型实例及设备,设备驱动注册源码的简单分析.
先看pci总线类型定义:
struct bus_type pci_bus_type = {
.name = "pci",
.match = pci_bus_match,
.uevent = pci_uevent,
.probe = pci_device_probe,
.remove = pci_device_remove,
.suspend = pci_device_suspend,
.shutdown = pci_device_shutdown,
.resume = pci_device_resume,
.dev_attrs = pci_dev_attrs,
};
然后是pci设备和驱动。pci设备和pci驱动没有直接使用device和device_driver,而是将二者封装起来,加上pci特定信息构成pci_dev和pci_driver。当然,意义是一样的。
struct pci_dev {
/* PCI设备的ID信息*/
unsigned int devfn;
unsigned short vendor;
unsigned short device;
unsigned short subsystem_vendor;
unsigned short subsystem_device;
unsigned int class;
/* ... */
struct pci_bus *bus; //所属pci总线
struct pci_driver *driver; //所属的pci驱动
/* ... */
struct device dev; //设备自身
/* ... */
};
这里省略了许多PCI设备特定的信息,如中断,资源等。。
当一个PCI 设备被发现, PCI 核心在内存中创建一个 struct pci_dev 类型的新变量。这个 PCI 设备的总线特定的成员被 PCI 核心初始化( devfn, vendor, device, 和其他成员), 并且 struct device 变量的 parent 变量被设置为 PCI 总线设备(注意总线也不仅有一个bus_type 结构,还对应一个设备device) bus 变量被设置指向 pci_bus_type 结构. 接下来 name 和 bus_id 变量被设置, 根据读自 PCI 设备的 name 和 ID.
在 PCI 设备结构被初始化之后, pci设备被注册到驱动核心, 调用 device_register(&dev->dev); 在device_register函数中,kobject被注册到驱动核心,pci设备被添加到pci总线的设备列表中,热拔插事件产生,同时kobject被添加到parent的链表中,sysfs入口也被添加。
PCI设备的发现是通过特定代码探测PCI空间来实现的。PCI设备由内核自动生成的。这样在注册pci驱动的时候PCI设备已经注册,其属性如ID的信息都已经是被初始化好了。
最后是pci_driver:
struct pci_driver {
struct list_head node;
char *name; //驱动name
const struct pci_device_id *id_table; /* 驱动支持的设备ID列表 */
int (*probe) (struct pci_dev *dev, const struct pci_device_id *id); /* New device inserted */
void (*remove) (struct pci_dev *dev); /* Device removed (NULL if not a hot-plug capable driver) */
int (*suspend) (struct pci_dev *dev, pm_message_t state); /* Device suspended */
int (*resume) (struct pci_dev *dev); /* Device woken up */
int (*enable_wake) (struct pci_dev *dev, pci_power_t state, int enable); /* Enable wake event */
void (*shutdown) (struct pci_dev *dev);
struct pci_error_handlers *err_handler;
struct device_driver driver; //设备驱动
struct pci_dynids dynids;
};
没有register_device(dev)和register_driver(drv)的注册,驱动核心就不知道设备和驱动的存在,sysfs也没有相关的入口。
最后一件事,看看register_device(dev)和register_driver(drv)的代码。
int device_register(struct device *dev)
{
device_initialize(dev);
return device_add(dev);
}
device_register-->device_initialize(dev);//初始化设备各个字段
void device_initialize(struct device *dev)
{
kobj_set_kset_s(dev, devices_subsys); //所有的dev属于devices_subsys这个集合
kobject_init(&dev->kobj); //初始kobj
klist_init(&dev->klist_children, klist_children_get,
klist_children_put);
INIT_LIST_HEAD(&dev->dma_pools);
INIT_LIST_HEAD(&dev->node);
init_MUTEX(&dev->sem);
device_init_wakeup(dev, 0);
}
device_register-->device_add(dev);
int device_add(struct device *dev) //主要流程
{
dev = get_device(dev);
parent = get_device(dev->parent);
kobject_set_name(&dev->kobj, "%s", dev->bus_id);
dev->kobj.parent = &parent->kobj;
kobject_add(&dev->kobj);//将自身kobject加入到层次结构中,并且建立sysfs entry.
//设置uevent_attr:
dev->uevent_attr.attr.name = "uevent";
dev->uevent_attr.attr.mode = S_IWUSR;
if (dev->driver)
dev->uevent_attr.attr.owner = dev->driver->owner;
dev->uevent_attr.store = store_uevent;
device_create_file(dev, &dev->uevent_attr);
//建立显示设备号的sysfs入口,即当前设备入口下的"dev"文件显示设备主从设备号。
if (MAJOR(dev->devt)) {
attr->attr.name = "dev";
attr->attr.mode = S_IRUGO;
if (dev->driver)
attr->attr.owner = dev->driver->owner;
attr->show = show_dev;
error = device_create_file(dev, attr);
}
//建立类的sysfs符号连接
if (dev->class) {
sysfs_create_link(&dev->kobj, &dev->class->subsys.kset.kobj,"subsystem");
sysfs_create_link(&dev->class->subsys.kset.kobj, &dev->kobj,dev->bus_id);}
sysfs_create_link(&dev->kobj, &dev->parent->kobj, "device");
class_name = make_class_name(dev->class->name, &dev->kobj);
sysfs_create_link(&dev->parent->kobj, &dev->kobj, class_name);
}
error = bus_add_device(dev);//添加一些bus相关的sysfs符号连接
/*设置环境变量,然后调用call_usermodehelper (argv[0], argv, envp, 0); 引起热拔插事件用户空间脚本执行。*/
kobject_uevent(&dev->kobj, KOBJ_ADD);
bus_attach_device(dev); /*如果dev->driver已经存在,调用device_bind_driver(dev);进行绑定,否则遍历dev->bus上drivers列表,调用dev->bus.match(dev,drv)来看是否有一个驱动与该dev匹配。如果匹配则绑定。*/
} OK,上述是主要流程。。
下面是register_driver(drv)函数:
int driver_register(struct device_driver * drv)
{
if ((drv->bus->probe && drv->probe) ||
(drv->bus->remove && drv->remove) ||
(drv->bus->shutdown && drv->shutdown)) {
printk(KERN_WARNING "Driver '%s' needs updating - please use bus_type methods\n", drv->name);
}
klist_init(&drv->klist_devices, klist_devices_get, klist_devices_put);
init_completion(&drv->unloaded);
return bus_add_driver(drv);
}
driver_register(drv);-->bus_add_driver(drv);
int bus_add_driver(struct device_driver * drv)
{
struct bus_type * bus = get_bus(drv->bus);
error = kobject_set_name(&drv->kobj, "%s", drv->name);
drv->kobj.kset = &bus->drivers; //驱动隶属于总线的驱动集合
error = kobject_register(&drv->kobj);//注册自身kobject
driver_attach(drv);//添加驱动到总线
klist_add_tail(&drv->knode_bus, &bus->klist_drivers);
module_add_driver(drv->owner, drv);
driver_add_attrs(bus, drv);
add_bind_files(drv);
}
driver_register(drv);-->bus_add_driver(drv);-->driver_attach(drv);
void driver_attach(struct device_driver * drv)
{
bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);
}
对总线上的每个设备dev,调用__driver_attach(dev,drv);最终调用
driver_probe_device(drv, dev);
driver_register(drv);-->bus_add_driver(drv);-->driver_attach(drv);
-->__driver_attach(dev,drv);-->driver_probe_device(drv, dev);
int driver_probe_device(struct device_driver * drv, struct device * dev)
{
if (drv->bus->match && !drv->bus->match(dev, drv))
goto Done;//优先调用总线提供匹配方法
dev->driver = drv;
if (dev->bus->probe) {
ret = dev->bus->probe(dev);//总线的探测方法
}
else if (drv->probe)
{
ret = drv->probe(dev); //用dev->driver的探测方法
}
device_bind_driver(dev); /*探测成功则绑定设备到驱动,添加dev到drv的设备列表并且建立驱动与设备在sys/入口中相互关联的符号连接*/
goto Done;
Done:
return ret;
}
乱七八糟的。主线还是模型的层次关系。对kobject,kset细节中关于属性,热拔插,sys入口的部分没有深入。或许,理解总体和设计思想是更重要的。人的精力真的有限。
四、面向对象的思想在linux设备模型中的应用分析.
通过设备模型,看到了面向对象编程思想用C语言的实现。比如说最简单的封装数据和方法。这里展现的更多的是继承方面的实现。比如说pci_driver,它的父类是device_driver,而更上一层是一个kobject。在C++中,继承一个父类则子类中相应的包含父类的一个实例。内核中也是通过包含一个父类的实体来实现这种派生关系。因此,一个pci_driver内部必然包含一个device_driver,同样,device_driver内部必然包含一个kobject。
上面提到过,注册一个模型的过程类似于面向对象中构造函数的调用。子类需要调用父类构造函数来完成自身的构造。再来看看注册一个pci_driver的过程:
pci_register_driver(struct pci_driver *driver)
-->driver_register(&drv->driver);
-->kobject_register(&drv->kobj);
这不是OO中的继承是什么??
设备模型源码中还能找到多态(虚函数)的思想。看到pci_driver和device_driver中提供了差不多同名的方法不觉得奇怪吗??它们不同的地方在于参数。pci_driver中方法的参数是pci_device * dev ,而device_driver方法的参数则是 device * dev 。这么安排是有意的!看看platform_driver是怎么做的。
最典型的例子莫过于platform_driver和device_driver。
struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
int (*suspend)(struct platform_device *, pm_message_t state);
int (*resume)(struct platform_device *);
struct device_driver driver;
};
这显然比pci_driver来得简洁。platform_driver除了包含一个device_driver,其它就是5个与device_driver同名的方法。
注册一个platform_driver的过程:
int platform_driver_register(struct platform_driver *drv)
{
drv->driver.bus = &platform_bus_type;
if (drv->probe)
drv->driver.probe = platform_drv_probe;
if (drv->remove)
drv->driver.remove = platform_drv_remove;
if (drv->shutdown)
drv->driver.shutdown = platform_drv_shutdown;
if (drv->suspend)
drv->driver.suspend = platform_drv_suspend;
if (drv->resume)
drv->driver.resume = platform_drv_resume;
return driver_register(&drv->driver);
}
这里设置了platform_driver包含的device_driver的函数指针。看看这些函数中的platform_drv_probe。
static int platform_drv_probe(struct device *_dev)
{
struct platform_driver *drv = to_platform_driver(_dev->driver);
struct platform_device *dev = to_platform_device(_dev);
return drv->probe(dev);
}
这里出现了两个指针类型转换,然后调用platform_driver提供的probe函数。
考虑一下platform_driver的注册过程。每个驱动注册过程相同。如前面分析过的,进入到driver_register后,设备驱动device_driver层的probe将会被调用来探测设备,这个函数像上面源码所指示的那样完成类型转化调用其子类platform_driver层的probe函数来完成具体的功能。 那么,从device_driver层看来,相同的函数调用由子类来完成了不同的具体功能。这不是多态的思想么??
这里非常粗浅的分析了linux设备模型中使用C实现面向对象的三大要素(封装,继承,多态)的基本思想。用C来实现确实做的工作要多一些,不过灵活性更高了。怪不得linus炮轰C++.
"使用优秀的、高效的、系统级的和可移植的C++的唯一方式,最终还是限于使用C本身具有的所有特性。"