分类: LINUX
2013-10-24 12:33:05
核心源程序的文件按树形结构进行组织,在源程序树的最上层你会看到这样一些目录:
· Arch :包括了所有和体系结构相关的核心代码。它的每一个子目录都代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体系结构的子目录。PC机一般都基于此目录;
· Include: 包括编译核心所需要的大部分头文件。与平台无关的头文件在 include/linux 子目录 下,与 intel cpu相关的头文件在include/asm-i386子目录下,而include/scsi目录则是有关 scsi设备的头文件目 录;
· Init: 包含核心的初始化代码(注:不是系统的引导代码),包含两个文件main.c和Version.c,这是研究核心如何工作的一个非常好的起点。
· Mm :包括所有独立于 cpu 体系结构的内存管理代码,如页式存储管理内存的分配和释放等;而和体系结构相关的内存管理代码则位于arch/*/mm/,例如arch/i386/mm/Fault.c
· Kernel:主要的核心代码,此目录下的文件实现了大多数linux系统的内核函数,其中最重要的文件当属sched.c;同样,和体系结构相关的代码在arch/*/kernel中;
· Drivers: 放置系统所有的设备驱动程序; 每种驱动程序又各占用一个子目录: 如/block 下为块设备驱动程序,比如 ide(ide.c). 如果你希望查看所有可能包含文件系统的设备是如何初始化的,你可以看drivers/block/genhd.c中的 device_setup()。它不仅初始化硬盘,也初始化网络,因为安装nfs文件系统的时候需要网络
· 其他: 如,
Lib, 放置核心的库代码;
Net, 核心与网络相关的代码;
Ipc, 这个目录包含核心的进程间通讯的代码;
Fs, 所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持一个文件系统,例如fat和ext2;Scripts, 此目录包含用于配置核心的脚本文件等;
阅读源码时应注意的其他文件还包括:
.depend, Makefile (for building)
Readme (目录说明)
----------------------------------------------------------------------------------------------------------------------------------------------
相关内核源代码分析:
1.系统的引导和初始化
Linux 系统的引导有好几种方式:常见的有 Lilo, Loadin引导和Linux的自举引导(bootsect-loader),而后者所对应源程序为arch/i386/boot/bootsect.S, 它为实模式的汇编程序, 限于篇幅在此不做分析; 无论是哪种引导方式, 最后都要跳转到 arch/i386/Kernel/setup.S, setup.S主要是进行时模式下的初始化, 为系统进入保护模式做准备; 此后, 系统执行 arch/i386/kernel/head.S (对经压缩后存放的内核要先执行 arch/i386/boot/compressed/head.S); head.S 中定义的一段汇编程序setup_idt, 它负责建立一张256项的 idt 表(Interrupt Descriptor Table),此表保存着所有自陷和中断的入口地址; 其中包括系统调用总控程序 system_call 的入口地址; 当然, 除此之外,head.S还要做一些其他的初始化工作;
2.系统初始化后运行的第一个内核程序asmlinkage void __init start_kernel(void) 定义在/usr/src/linux/init/main.c中, 它通过调用usr/src/linux/arch/i386/kernel/traps.c 中的一个函数
void __init trap_init(void) 把各自陷和中断服务程序的入口地址设置到 idt 表中,其中系统调用总控程序system_cal就是中断服务程序之一; void __init trap_init(void) 函数则通过调用一个宏 set_system_gate(SYSCALL_VECTOR,&system_call); 把系统调用总控程序的入口挂在中断0x80上; 其中SYSCALL_VECTOR是定义在 /usr/src/linux/arch/i386/kernel/irq.h中的一个常量0x80; 而 system_call即为中断总控程序的入口地址; 中断总控程序用汇编语言定义在/usr/src/linux/arch/i386/kernel/entry.S中;
3.中断总控程序主要负责保存处理机执行系统调用前的状态, 检验当前调用是否合法, 并根据系统调用向量, 使处理机跳转到保存在 sys_call_table 表中的相应系统服务例程的入口; 从系统服务例程返回后恢复处理机状态退回用户程序; 而系统调用向量则定义在/usr/src/linux/include/asm-386/unistd.h 中;sys_call_table 表定义在/usr/src/linux/arch/i386/kernel/entry.S 中; 同时在 /usr/src/linux/include/asm-386/unistd.h中也定义了系统调用的用户编程接口;
4.由此可见, linux的系统调用也象 dos 系统的 int 21h 中断服务, 它把0x80 中断作为总的入口, 然后转到保存在 sys_call_table 表中的各种中断服务例程的入口地址 , 形成各种不同的中断服务;
由以上源代码分析可知, 要增加一个系统调用就必须在 sys_call_table 表中增加一项 , 并在其中保存好自己的系统服务例程的入口地址,然后重新编译内核,当然,系统服务例程是必不可少的. 由此可知在此版linux内核源程序<2。2。5>中, 与系统调用相关的源程序文件就包括以下这些:
1.arch/i386/boot/bootsect.S
2.arch/i386/Kernel/setup.S
3.arch/i386/boot/compressed/head.S
4.arch/i386/kernel/head.S
5.init/main.c
6.arch/i386/kernel/traps.c
7.arch/i386/kernel/entry.S
8.arch/i386/kernel/irq.h
9.include/asm-386/unistd.h
当然, 这只是涉及到的几个主要文件. 而事实上, 增加系统调用真正要修改文件只有include/asm-386/unistd.h和arch/i386/kernel/entry.S两个.
----------------------------------------------------------------------------------------------------------------------------------------------
对内核源码的修改
1.在kernel/sys.c中增加系统服务例程如下:
asmlinkage int sys_addtotal(int numdata)
{
int i=0,enddata=0;
while(i<=numdata)
enddata+=i++;
return enddata;
}
该函数有一个 int 型入口参数 numdata , 并返回从 0 到 numdata 的累加值; 当然也可以把系统服务例程放在一个自己定义的文件或其他文件中,只是要在相应文件中作必要的说明;
2.把 asmlinkage int sys_addtotal( int) 的入口地址加到sys_call_table表中:
arch/i386/kernel/entry.S 中的最后几行源代码修改前为:
... ...
.long SYMBOL_NAME(sys_sendfile)
.long SYMBOL_NAME(sys_ni_syscall) /* streams1 */
.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */
.long SYMBOL_NAME(sys_vfork) /* 190 */
.rept NR_syscalls-190
.long SYMBOL_NAME(sys_ni_syscall)
.endr
修改后为: ... ...
.long SYMBOL_NAME(sys_sendfile)
.long SYMBOL_NAME(sys_ni_syscall) /* streams1 */
.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */
.long SYMBOL_NAME(sys_vfork) /* 190 */
/* add by I */
.long SYMBOL_NAME(sys_addtotal)
.rept NR_syscalls-191
.long SYMBOL_NAME(sys_ni_syscall)
.endr
3. 把增加的 sys_call_table 表项所对应的向量,在include/asm-386/unistd.h 中进行必要申明,以供用户进程和其他系统进程查询或调用:
增加后的部分 /usr/src/linux/include/asm-386/unistd.h 文件如下:
... ...
#define __NR_sendfile 187
#define __NR_getpmsg 188
#define __NR_putpmsg 189
#define __NR_vfork 190
/* add by I */
#define __NR_addtotal 191
4.测试程序(test.c)如下:
#include
#include
_syscall1(int,addtotal,int, num)
main()
{
int i,j;
do {
printf("Please input a number\n");
}while(scanf("%d",&i)==EOF);
if((j=addtotal(i))==-1)
printf("Error occurred in syscall-addtotal();\n");
printf("Total from 0 to %d is %d \n",i,j);
}
对修改后的新的内核进行编译,并引导它作为新的操作系统,运行几个程序后可以发现一切正常;在新的系统下对测试程序进行编译(*注:由于原内核并未提供此系统调用,所以只有在编译后的新内核下,此测试程序才能可能被编译通过),运行情况如下:
$gcc -o test test.c
$./test
Please input a number
36
Total from 0 to 36 is 666
可见,修改成功;
而且,对相关源码的进一步分析可知,在此版本的内核中,从/usr/src/linux/arch/i386/kernel/entry.S文件中对 sys_call_table 表的设置可以看出,有好几个系统调用的服务例程都是定义在
/usr/src/linux/kernel/sys.c 中的同一个函数:
asmlinkage int sys_ni_syscall(void)
{
return -ENOSYS;
}
例如第188项和第189项就是如此:
... ...
.long SYMBOL_NAME(sys_sendfile)
.long SYMBOL_NAME(sys_ni_syscall) /* streams1 */
.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */
.long SYMBOL_NAME(sys_vfork) /* 190 */
... ...
而这两项在文件 /usr/src/linux/include/asm-386/unistd.h 中却申明如下:
... ...
#define __NR_sendfile 187
#define __NR_getpmsg 188 /* some people actually want streams */
#define __NR_putpmsg 189 /* some people actually want streams */
#define __NR_vfork 190
由此可见,在此版本的内核源代码中,由于asmlinkage int sys_ni_syscall(void) 函数并不进行任何操作, 所以包括 getpmsg, putpmsg 在内的好几个系统调用都是不进行任何操作的,即有待扩充的空调用; 但它们却仍然占用着sys_call_table表项,估计这是设计者们为了方便扩充系统调用而安排的; 所以只需增加相应服务例程(如增加服务例程getmsg或putpmsg),就可以达到增加系统调用的作用。
结语:当然对于庞大复杂的 linux 内核而言,一篇文章远远不够,而且与系统调用相关的代码也只是内核中极其微小的一部分;但重要的是方法、掌握好的分析方法;所以上的分析只是起个引导的作用,而正真的分析还有待于读者自己的努力。