Chinaunix首页 | 论坛 | 博客
  • 博客访问: 586301
  • 博文数量: 192
  • 博客积分: 3780
  • 博客等级: 中校
  • 技术积分: 1487
  • 用 户 组: 普通用户
  • 注册时间: 2010-08-26 10:11
文章存档

2012年(6)

2011年(160)

2010年(26)

分类: C/C++

2011-09-08 20:08:22

一、字节序定义

字节序,顾名思义字节的顺序,再多说两句就是大于一个字节类型的数据在内存中的存放顺序(一个字节的数据当然就无需谈顺序的问题了)。

其实大部分人在实际的开发中都很少会直接和字节序打交道。唯有在跨平台以及网络程序中字节序才是一个应该被考虑的问题。

在所有的介绍字节序的文章中都会提到字节序分为两类:Big-Endian和Little-Endian。引用标准的Big-Endian和Little-Endian的定义如下:
a) Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。
b) Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。
c) 网络字节序:4个字节的32 bit值以下面的次序传输:首先是0~7bit,其次8~15bit,然后16~23bit,最后是24~31bit。这种传输次序称作大端字节序。由于 TCP/IP首部中所有的二进制整数在网络中传输时都要求以这种次序,因此它又称作网络字节序。比如,以太网头部中2字节的“以太网帧类型”,表示后面数据的类型。对于ARP请求或应答的以太网帧类型来说,在网络传输时,发送的顺序是0x08,0x06。在内存中的映象如下图所示:
栈底 (高地址)
---------------
0x06 -- 低位 
0x08 -- 高位
---------------
栈顶 (低地址)
该字段的值为0x0806。按照大端方式存放在内存中。

二、高/低地址与高低字节

首先我们要知道我们C程序映像中内存的空间布局情况:在《C专家编程》中或者《Unix环境高级编程》中有关于内存空间布局情况的说明,大致如下图:
----------------------- 最高内存地址 0xffffffff
 | 栈底
 .
 .              栈
 .
  栈顶
-----------------------
 |
 |
\|/

NULL (空洞)

/|\
 |
 |
-----------------------
                堆
-----------------------
未初始化的数据
----------------(统称数据段)
初始化的数据
-----------------------
正文段(代码段)
----------------------- 最低内存地址 0x00000000

以上图为例如果我们在栈上分配一个unsigned char buf[4],那么这个数组变量在栈上是如何布局的呢[注1]?看下图:
栈底 (高地址)
----------
buf[3]
buf[2]
buf[1]
buf[0]
----------
栈顶 (低地址)

现在我们弄清了高低地址,接着来弄清高/低字节,如果我们有一个32位无符号整型0x12345678(呵呵,恰好是把上面的那4个字节buf看成一个整型),那么高位是什么,低位又是什么呢?其实很简单。在十进制中我们都说靠左边的是高位,靠右边的是低位,在其他进制也是如此。就拿 0x12345678来说,从高位到低位的字节依次是0x12、0x34、0x56和0x78。

高低地址和高低字节都弄清了。我们再来回顾一下Big-Endian和Little-Endian的定义,并用图示说明两种字节序:
以unsigned int value = 0x12345678为例,分别看看在两种字节序下其存储情况,我们可以用unsigned char buf[4]来表示value:
Big-Endian: 低地址存放高位,如下图:
栈底 (高地址)
---------------
buf[3] (0x78) -- 低位
buf[2] (0x56)
buf[1] (0x34)
buf[0] (0x12) -- 高位
---------------
栈顶 (低地址)

Little-Endian: 低地址存放低位,如下图:
栈底 (高地址)
---------------
buf[3] (0x12) -- 高位
buf[2] (0x34)
buf[1] (0x56)
buf[0] (0x78) -- 低位
---------------
栈顶 (低地址)

在现有的平台上Intel的X86采用的是Little-Endian,而像Sun的SPARC采用的就是Big-Endian。

三、例子

嵌入式系统开发者应该对Little-endian和Big-endian模式非常了解。采用Little-endian模式的CPU对操作数的存放方式是从低字节到高字节,而Big-endian模式对操作数的存放方式是从高字节到低字节。

例如,16bit宽的数0x1234在Little-endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:

内存地址  存放内容
 0x4001    0x12
 0x4000    0x34

而在Big-endian模式CPU内存中的存放方式则为:

内存地址  存放内容
 0x4001    0x34
 0x4000    0x12
 
32bit宽的数0x12345678在Little-endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:

内存地址  存放内容
 0x4003     0x12
 0x4002     0x34
 0x4001     0x56
 0x4000     0x78
 
而在Big-endian模式CPU内存中的存放方式则为:

内存地址  存放内容
 0x4003     0x78
 0x4002     0x56
 0x4001     0x34
 0x4000     0x12


http://www.cnblogs.com/wqlblogger/archive/2008/01/25/1052915.html

网络:


一、概念及详解

在各种体系的计算机中通常采用的字节存储机制主要有两种: big-endian和little-endian,即大端模式和小端模式。

先回顾两个关键词,MSB和LSB:

MSB:Most Significant Bit ------- 最高有效位
        LSB:Least Significant Bit ------- 最低有效位

大端模式(big-edian)

big-endian:MSB存放在最低端的地址上。

举例,双字节数0x1234以big-endian的方式存在起始地址0x00002000中:

| data |<-- address
        | 0x12 |<-- 0x00002000
        | 0x34 |<-- 0x00002001

在Big-Endian中,对于bit序列中的序号编排方式如下(以双字节数0x8B8A为例):

bit | 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15
        ------MSB----------------------------------LSB
        val | 1 0 0 0 1 0 1 1 | 1 0 0 0 1 0 1 0 |
        +--------------------------------------------+
        = 0x8 B 8 A

小端模式(little-endian)

little-endian:LSB存放在最低端的地址上。

举例,双字节数0x1234以little-endian的方式存在起始地址0x00002000中:

| data |<-- address
        | 0x34 |<-- 0x00002000
        | 0x12 |<-- 0x00002001

在Little-Endian中,对于bit序列中的序号编排和Big-Endian刚好相反,其方式如下(以双字节数0x8B8A为例):

bit | 15 14 13 12 11 10 9 8 | 7 6 5 4 3 2 1 0
        ------MSB-----------------------------------LSB
        val | 1 0 0 0 1 0 1 1 | 1 0 0 0 1 0 1 0 |
        +---------------------------------------------+
        = 0x8 B 8 A

二、数组在大端小端情况下的存储:

以unsigned int value = 0x12345678为例,分别看看在两种字节序下其存储情况,我们可以用unsigned char buf[4]来表示value:
Big-Endian: 低地址存放高位,如下:

高地址
        ---------------
        buf[3] (0x78) -- 低位
        buf[2] (0x56)
        buf[1] (0x34)
        buf[0] (0x12) -- 高位
        ---------------
        低地址

Little-Endian: 低地址存放低位,如下:

高地址
        ---------------
        buf[3] (0x12) -- 高位
        buf[2] (0x34)
        buf[1] (0x56)
        buf[0] (0x78) -- 低位
        --------------
        低地址

三、大端小端转换方法:

Big-Endian转换成Little-Endian如下:

#define BigtoLittle16(A)                 ((((uint16)(A) & 0xff00) >> 8) | \
                                                                   (((uint16)(A) & 0x00ff) << 8))
        #define BigtoLittle32(A)                 ((((uint32)(A) & 0xff000000) >> 24) | \
                                                                   (((uint32)(A) & 0x00ff0000) >> 8) | \
                                                                   (((uint32)(A) & 0x0000ff00) << 8) | \
                                                                   (((uint32)(A) & 0x000000ff) << 24))

四、大端小端检测方法:

如何检查处理器是big-endian还是little-endian?

联合体union的存放顺序是所有成员都从低地址开始存放,利用该特性就可以轻松地获得了CPU对内存采用Little-endian还是Big-endian模式读写。

int checkCPUendian()
        {
                union
                {
                        unsigned int a;
                        unsigned char b; 
                }c;
                c.a = 1;
                return (c.b == 1); 
        } 
        /*return 1 : little-endian, return 0:big-endian*/


DEC (Digital Equipment Corporation,现在是Compaq公司的一部分)和Intel的机器(X86平台)一般采用小端。
IBM, Motorola(Power PC), Sun的机器一般采用大端。
当然,这不代表所有情况。有的CPU即能工作于小端, 又能工作于大端, 比如ARM, Alpha,摩托罗拉的PowerPC。 具体情形参考处理器手册。


http://blog.21ic.com/user1/4132/archives/2010/66047.html

阅读(518) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~