全部博文(175)
分类: LINUX
2013-04-03 14:37:23
在这里,我主要把自己对内核中spinlock的一些理解写出来,并不是要告诉大家什么(因为我对我所说的也不能确定),而是希望大家对我的这些理解对的地方给我肯定,错误的地方给我指出。
和spinlock
相关的文件主要有两个,一个是include/linux/spinlock.h,主要是提供关于和硬件无关的spinlock的几个对外主函数,一个是
include/asm-XXX/spinlock.h,用来提供和硬件相关的功能函数。另外,在2.6的内核中,又多了一个文件,
include/linux/preempt.h,为新增加的抢占式多任务功能提供一些服务。
spinlock的作用:spinlock系列函数主要用于保护临界数据(非常重要的数据)不被同时访问(给临界数据加锁),用以达到多任务的同步。如果一个数据当前不可访问,那么就一直等,直到可以访问为止。
spinlock 函数的使用前提:首先,spinklock函数只能使用在内核中,或者说只能使用在内核状态下,在2.6以前的内核是不可抢占的,也就是说,当运行于内核状态下时,是不容许切换到其他进程的。而在2.6以后的内核中,编译内核的时候多了一个选项,可以配置内核是否可以被抢占,这也就是为什么在2.6的内核中多了一个preempt.h的原因。
spinlock主要包含以下几个函数:
spin_lock
spin_unlock
spin_lock_irqsave
spin_lock_irq
spin_unlock_irqrestore
spin_unlock_irq
另
外还有其他很多,如关于读者写者的一套函数,关于bottom half一套函数(关于bottom
half的代码我还没有读到),还有还提供了一套用bit实现加锁的函数,由于大概意思都相同,所以我这里就不说了(只想简单说说,没想到东西还挺多,我
的手都快冻僵了,江南的冬天真的受不了:)
spinlock函数根据机器的配置分为两套,单CPU和多CPU,先来看看单CPU的情况。
在
单CPU的情况下,spin_lock和spin_unlock函数都被定义成空操作(do { }
while(0)),这是因为我们上面说的,内核不可以被抢占的原因。所以,在单CPU的情况下,只要你能够保证你要保护的临界数据不会在中断中用到的
话,那么你的数据已经是受保护的了,不需要做任何操作。在2.6内核中,这两个函数就不再这么简单了,因为内核也有可能被其他程序中断,所以要保护数据,
还要让调度程序暂时不调度此段程序,也就是说,暂时禁止抢占式任务调度功能,所以在上面两个函数中分别多了一个
spin_lock()/spin_unlock(), spin_lock_irq()/spin_unlock_irq(), spin_lock_irqsave/spin_unlock_irqrestore() spin_lock_bh()/spin_unlock_bh() local_irq_disable/local_irq_enable local_bh_disable/local_bh_enable
1 用户进程的内核态,此时有进程context,主要是代表进程在执行系统调用 等。 2 中断或者异常或者自陷等,从概念上说,此时没有进程context,不能进行 context switch。 3 bottom_half,从概念上说,此时也没有进程context。 4 同时,相同的执行路径还可能在其他的CPU上运行。
int setup_irq(unsigned int irq, struct irqaction * new) { int shared = 0; unsigned long flags; struct irqaction *old, **p; irq_desc_t *desc = irq_desc + irq; /* * Some drivers like serial.c use request_irq() heavily, * so we have to be careful not to interfere with a * running system. */ if (new->flags & SA_SAMPLE_RANDOM) { /* * This function might sleep, we want to call it first, * outside of the atomic block. * Yes, this might clear the entropy pool if the wrong * driver is attempted to be loaded, without actually * installing a new handler, but is this really a problem, * only the sysadmin is able to do this. */ rand_initialize_irq(irq); } /* * The following block of code has to be executed atomically */ [1] spin_lock_irqsave(&desc->lock,flags); p = &desc->action; if ((old = *p) != NULL) { /* Can't share interrupts unless both agree to */ if (!(old->flags & new->flags & SA_SHIRQ)) { [2] spin_unlock_irqrestore(&desc->lock,flags); return -EBUSY; } /* add new interrupt at end of irq queue */ do { p = &old->next; old = *p; } while (old); shared = 1; } *p = new; if (!shared) { desc->depth = 0; desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING); desc->handler->startup(irq); } [3] spin_unlock_irqrestore(&desc->lock,flags); register_irq_proc(irq); return 0; } asmlinkage unsigned int do_IRQ(struct pt_regs regs) { /* * We ack quickly, we don't want the irq controller * thinking we're snobs just because some other CPU has * disabled global interrupts (we have already done the * INT_ACK cycles, it's too late to try to pretend to the * controller that we aren't taking the interrupt). * * 0 return value means that this irq is already being * handled by some other CPU. (or is disabled) */ int irq = regs.orig_eax & 0xff; /* high bits used in ret_from_ code */ int cpu = smp_processor_id(); irq_desc_t *desc = irq_desc + irq; struct irqaction * action; unsigned int status; kstat.irqs[cpu][irq]++; [4] spin_lock(&desc->lock); desc->handler->ack(irq); /* REPLAY is when Linux resends an IRQ that was dropped earlier WAITING is used by probe to mark irqs that are being tested */ status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING); status |= IRQ_PENDING; /* we _want_ to handle it */ /* * If the IRQ is disabled for whatever reason, we cannot * use the action we have. */ action = NULL; if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) { action = desc->action; status &= ~IRQ_PENDING; /* we commit to handling */ status |= IRQ_INPROGRESS; /* we are handling it */ } desc->status = status; /* * If there is no IRQ handler or it was disabled, exit early. Since we set PENDING, if another processor is handling a different instance of this same irq, the other processor will take care of it. */ if (!action) goto out; /* * Edge triggered interrupts need to remember * pending events. * This applies to any hw interrupts that allow a second * instance of the same irq to arrive while we are in do_IRQ * or in the handler. But the code here only handles the _second_ * instance of the irq, not the third or fourth. So it is mostly * useful for irq hardware that does not mask cleanly in an * SMP environment. */ for (;;) { [5] spin_unlock(&desc->lock); handle_IRQ_event(irq, ?s, action); [6] spin_lock(&desc->lock); if (!(desc->status & IRQ_PENDING)) break; desc->status &= ~IRQ_PENDING; } desc->status &= ~IRQ_INPROGRESS; out: /* * The ->end() handler has to deal with interrupts which got * disabled while the handler was running. */ desc->handler->end(irq); [7] spin_unlock(&desc->lock); if (softirq_pending(cpu)) do_softirq(); return 1; }
static void tasklet_hi_action(struct softirq_action *a) { int cpu = smp_processor_id(); struct tasklet_struct *list; [8] local_irq_disable(); list = tasklet_hi_vec[cpu].list; tasklet_hi_vec[cpu].list = NULL; [9] local_irq_enable(); while (list) { struct tasklet_struct *t = list; list = list->next; if (tasklet_trylock(t)) { if (!atomic_read(&t->count)) { if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state)) BUG(); t->func(t->data); tasklet_unlock(t); continue; } tasklet_unlock(t); } [10] local_irq_disable(); t->next = tasklet_hi_vec[cpu].list; tasklet_hi_vec[cpu].list = t; __cpu_raise_softirq(cpu, HI_SOFTIRQ); [11] local_irq_enable(); } }