Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1319714
  • 博文数量: 175
  • 博客积分: 2743
  • 博客等级: 少校
  • 技术积分: 4024
  • 用 户 组: 普通用户
  • 注册时间: 2010-12-30 01:41
文章分类

全部博文(175)

文章存档

2015年(1)

2013年(53)

2012年(71)

2011年(50)

分类: LINUX

2012-12-20 17:38:09

串口的open操作(tty_open)
分类: linux驱动之串口(非console) 138人阅读 评论(0) 举报

根据前面的操作,串口作为字符驱动也已经注册到系统了,/dev目录下也有设备文件节点了。

那接下来uart的操作是如何进行的呢?

操作硬件之前都是要先open设备,先来分析下这里的open函数具体做了那些工作(做了大量工作 ,真的!)。

应用层通过open系统调用open(“/dev/s3c2410_serial0”,)一层一层调用到会调用到tty_open。

因为串口在linux下是作为tty设备的,结合前面的注册过程可以分析这里首先调用的就是tty_open这个函数。

  1. cdev_init(&driver->cdev, &tty_fops);  
cdev_init(&driver->cdev, &tty_fops);因为根据注册的时候将s3c2410_serial0注册为一个字符设备,字符设备对应的驱动为tty_fops
  1. static const struct file_operations tty_fops = {  
  2.     .llseek     = no_llseek,  
  3.     .read       = tty_read,  
  4.     .write      = tty_write,  
  5.     .poll       = tty_poll,  
  6.     .unlocked_ioctl = tty_ioctl,  
  7.     .compat_ioctl   = tty_compat_ioctl,  
  8.     .open       = tty_open,  
  9.     .release        = tty_release,  
  10.     .fasync     = tty_fasync,  
  11. };  
static const struct file_operations tty_fops = { .llseek = no_llseek, .read = tty_read, .write = tty_write, .poll = tty_poll, .unlocked_ioctl = tty_ioctl, .compat_ioctl = tty_compat_ioctl, .open = tty_open, .release = tty_release, .fasync = tty_fasync, };
所以这里就调用的是tty_open函数。

下面具体分析tty_open

  1. static int tty_open(struct inode *inode, struct file *filp)  
  2. {  
  3.     struct tty_struct *tty = NULL;  
  4.     int noctty, retval;  
  5.     struct tty_driver *driver;  
  6.     int index;  
  7.     dev_t device = inode->i_rdev;  
  8.     unsigned saved_flags = filp->f_flags;  
  9.   
  10.     nonseekable_open(inode, filp);  
  11.   
  12. retry_open:  
  13.     noctty = filp->f_flags & O_NOCTTY;  
  14.     index  = -1;  
  15.     retval = 0;  
  16.   
  17.     mutex_lock(&tty_mutex);  
  18.     tty_lock();  
  19.   
  20.     if (device == MKDEV(TTYAUX_MAJOR, 0)) {  
  21.         tty = get_current_tty();  
  22.         if (!tty) {  
  23.             tty_unlock();  
  24.             mutex_unlock(&tty_mutex);  
  25.             return -ENXIO;  
  26.         }  
  27.         driver = tty_driver_kref_get(tty->driver);  
  28.         index = tty->index;  
  29.         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */  
  30.         /* noctty = 1; */  
  31.         /* FIXME: Should we take a driver reference ? */  
  32.         tty_kref_put(tty);  
  33.         goto got_driver;  
  34.     }  
  35. #ifdef CONFIG_VT  
  36.     if (device == MKDEV(TTY_MAJOR, 0)) {  
  37.         extern struct tty_driver *console_driver;  
  38.         driver = tty_driver_kref_get(console_driver);  
  39.         index = fg_console;  
  40.         noctty = 1;  
  41.         goto got_driver;  
  42.     }  
  43. #endif  
  44.     if (device == MKDEV(TTYAUX_MAJOR, 1)) {  
  45.         struct tty_driver *console_driver = console_device(&index);  
  46.         if (console_driver) {  
  47.             driver = tty_driver_kref_get(console_driver);  
  48.             if (driver) {  
  49.                 /* Don't let /dev/console block */  
  50.                 filp->f_flags |= O_NONBLOCK;  
  51.                 noctty = 1;  
  52.                 goto got_driver;  
  53.             }  
  54.         }  
  55.         tty_unlock();  
  56.         mutex_unlock(&tty_mutex);  
  57.         return -ENODEV;  
  58.     }  
  59.   
  60. "color: rgb(255, 0, 0);">   driver = get_tty_driver(device, &index);  
  61.     if (!driver) {  
  62.         tty_unlock();  
  63.         mutex_unlock(&tty_mutex);  
  64.         return -ENODEV;  
  65.     }  
  66. got_driver:  
  67.     if (!tty) {  
  68.         /* check whether we're reopening an existing tty */  
  69.         tty = tty_driver_lookup_tty(driver, inode, index);  
  70.   
  71.         if (IS_ERR(tty)) {  
  72.             tty_unlock();  
  73.             mutex_unlock(&tty_mutex);  
  74.             return PTR_ERR(tty);  
  75.         }  
  76.     }  
  77.   
  78.     if (tty) {  
  79.         retval = tty_reopen(tty);  
  80.         if (retval)  
  81.             tty = ERR_PTR(retval);  
  82.     } else  
  83.     "color: rgb(255, 0, 0);">   tty = tty_init_dev(driver, index, 0);  
  84.   
  85.     mutex_unlock(&tty_mutex);  
  86.     tty_driver_kref_put(driver);  
  87.     if (IS_ERR(tty)) {  
  88.         tty_unlock();  
  89.         return PTR_ERR(tty);  
  90.     }  
  91.   
  92.     retval = tty_add_file(tty, filp);  
  93.     if (retval) {  
  94.         tty_unlock();  
  95.         return retval;  
  96.     }  
  97.   
  98.     check_tty_count(tty, "tty_open");  
  99.     if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&  
  100.         tty->driver->subtype == PTY_TYPE_MASTER)  
  101.         noctty = 1;  
  102. #ifdef TTY_DEBUG_HANGUP  
  103.     printk(KERN_DEBUG "opening %s...", tty->name);  
  104. #endif  
  105.     if (!retval) {  
  106.         if (tty->ops->open)  
  107.             "color: rgb(255, 0, 0);">retval = tty->ops->open(tty, filp);  
  108.         else  
  109.             retval = -ENODEV;  
  110.     }  
  111.     filp->f_flags = saved_flags;  
  112.   
  113.     if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&  
  114.                         !capable(CAP_SYS_ADMIN))  
  115.         retval = -EBUSY;  
  116.   
  117.     if (retval) {  
  118. #ifdef TTY_DEBUG_HANGUP  
  119.         printk(KERN_DEBUG "error %d in opening %s...", retval,  
  120.                tty->name);  
  121. #endif  
  122.         tty_unlock(); /* need to call tty_release without BTM */  
  123.         tty_release(inode, filp);  
  124.         if (retval != -ERESTARTSYS)  
  125.             return retval;  
  126.   
  127.         if (signal_pending(current))  
  128.             return retval;  
  129.   
  130.         schedule();  
  131.         /* 
  132.          * Need to reset f_op in case a hangup happened. 
  133.          */  
  134.         tty_lock();  
  135.         if (filp->f_op == &hung_up_tty_fops)  
  136.             filp->f_op = &tty_fops;  
  137.         tty_unlock();  
  138.         goto retry_open;  
  139.     }  
  140.     tty_unlock();  
  141.   
  142.   
  143.     mutex_lock(&tty_mutex);  
  144.     tty_lock();  
  145.     spin_lock_irq(¤t->sighand->siglock);  
  146.     if (!noctty &&  
  147.         current->signal->leader &&  
  148.         !current->signal->tty &&  
  149.         tty->session == NULL)  
  150.         __proc_set_tty(current, tty);  
  151.     spin_unlock_irq(¤t->sighand->siglock);  
  152.     tty_unlock();  
  153.     mutex_unlock(&tty_mutex);  
  154.     return 0;  
  155. }  
static int tty_open(struct inode *inode, struct file *filp) { struct tty_struct *tty = NULL; int noctty, retval; struct tty_driver *driver; int index; dev_t device = inode->i_rdev; unsigned saved_flags = filp->f_flags; nonseekable_open(inode, filp); retry_open: noctty = filp->f_flags & O_NOCTTY; index = -1; retval = 0; mutex_lock(&tty_mutex); tty_lock(); if (device == MKDEV(TTYAUX_MAJOR, 0)) { tty = get_current_tty(); if (!tty) { tty_unlock(); mutex_unlock(&tty_mutex); return -ENXIO; } driver = tty_driver_kref_get(tty->driver); index = tty->index; filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ /* noctty = 1; */ /* FIXME: Should we take a driver reference ? */ tty_kref_put(tty); goto got_driver; } #ifdef CONFIG_VT if (device == MKDEV(TTY_MAJOR, 0)) { extern struct tty_driver *console_driver; driver = tty_driver_kref_get(console_driver); index = fg_console; noctty = 1; goto got_driver; } #endif if (device == MKDEV(TTYAUX_MAJOR, 1)) { struct tty_driver *console_driver = console_device(&index); if (console_driver) { driver = tty_driver_kref_get(console_driver); if (driver) { /* Don't let /dev/console block */ filp->f_flags |= O_NONBLOCK; noctty = 1; goto got_driver; } } tty_unlock(); mutex_unlock(&tty_mutex); return -ENODEV; } driver = get_tty_driver(device, &index); if (!driver) { tty_unlock(); mutex_unlock(&tty_mutex); return -ENODEV; } got_driver: if (!tty) { /* check whether we're reopening an existing tty */ tty = tty_driver_lookup_tty(driver, inode, index); if (IS_ERR(tty)) { tty_unlock(); mutex_unlock(&tty_mutex); return PTR_ERR(tty); } } if (tty) { retval = tty_reopen(tty); if (retval) tty = ERR_PTR(retval); } else tty = tty_init_dev(driver, index, 0); mutex_unlock(&tty_mutex); tty_driver_kref_put(driver); if (IS_ERR(tty)) { tty_unlock(); return PTR_ERR(tty); } retval = tty_add_file(tty, filp); if (retval) { tty_unlock(); return retval; } check_tty_count(tty, "tty_open"); if (tty->driver->type == TTY_DRIVER_TYPE_PTY && tty->driver->subtype == PTY_TYPE_MASTER) noctty = 1; #ifdef TTY_DEBUG_HANGUP printk(KERN_DEBUG "opening %s...", tty->name); #endif if (!retval) { if (tty->ops->open) retval = tty->ops->open(tty, filp); else retval = -ENODEV; } filp->f_flags = saved_flags; if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) retval = -EBUSY; if (retval) { #ifdef TTY_DEBUG_HANGUP printk(KERN_DEBUG "error %d in opening %s...", retval, tty->name); #endif tty_unlock(); /* need to call tty_release without BTM */ tty_release(inode, filp); if (retval != -ERESTARTSYS) return retval; if (signal_pending(current)) return retval; schedule(); /* * Need to reset f_op in case a hangup happened. */ tty_lock(); if (filp->f_op == &hung_up_tty_fops) filp->f_op = &tty_fops; tty_unlock(); goto retry_open; } tty_unlock(); mutex_lock(&tty_mutex); tty_lock(); spin_lock_irq(¤t->sighand->siglock); if (!noctty && current->signal->leader && !current->signal->tty && tty->session == NULL) __proc_set_tty(current, tty); spin_unlock_irq(¤t->sighand->siglock); tty_unlock(); mutex_unlock(&tty_mutex); return 0; } 函数首先判断打开的设备是否是

5 0(/dev/tty)

5 1(/dev/console)

4 0(/dev/tty0)

此处打开的是/dev/s3c2410_serial0设备号为204 64

所以前面的判断全部失败,直接执行标红的那条语句

  1. driver = get_tty_driver(device, &index);  
driver = get_tty_driver(device, &index);get_tty_driver函数如下:
  1. static struct tty_driver *get_tty_driver(dev_t device, int *index)  
  2. {  
  3.     struct tty_driver *p;  
  4.   
  5.     list_for_each_entry(p, &tty_drivers, tty_drivers) {  
  6.         dev_t base = MKDEV(p->major, p->minor_start);  
  7.         if (device < base || device >= base + p->num)  
  8.             continue;  
  9.         *index = device - base;  
  10.         return tty_driver_kref_get(p);  
  11.     }  
  12.     return NULL;  
  13. }  
static struct tty_driver *get_tty_driver(dev_t device, int *index) { struct tty_driver *p; list_for_each_entry(p, &tty_drivers, tty_drivers) { dev_t base = MKDEV(p->major, p->minor_start); if (device < base || device >= base + p->num) continue; *index = device - base; return tty_driver_kref_get(p); } return NULL; }可见,此函数的作用就是通过设备号来找到设备对应的tty_driver,并且将索引号码保存在index中

因为一个tty_driver对应的是所有此种类型的tty设备,比如所有的串口设备,所以需要通过这个索引号

index来判断打开的是具体哪个设备。并且每个具体的设备对应着一个用来描述自己的tty_struct。

而系统后面的操作全部和这个tty_struct相关。

然后接着open函数会判断是否有tty_struct,假如不存在则创建并初始化一个tty_struct。

tty_struct是tty结构体中最重要的一个数据结构,内核通过tty-struct这个结构体来描述一个具体的tty设备在内核中

的活动状况的,后面对设备的write、read中都需要使用到这个tty_struct,并且严重依赖这个结构体。

由于此处是不存在tty_struct,所以直接调用函数初始化tty_struct

  1. tty = tty_init_dev(driver, index, 0);  
tty = tty_init_dev(driver, index, 0);
参数driver为tty_driver,是前面通过get_tty_driver获得的,index此处为0,也是通过前面get_tty_driver获得的。

tty_init_dev()函数具体如下

  1. struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,  
  2.                                 int first_ok)  
  3. {  
  4.     struct tty_struct *tty;  
  5.     int retval;  
  6.   
  7.     /* Check if pty master is being opened multiple times */  
  8.     if (driver->subtype == PTY_TYPE_MASTER &&  
  9.         (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {  
  10.         return ERR_PTR(-EIO);  
  11.     }  
  12.   
  13.     /* 
  14.      * First time open is complex, especially for PTY devices. 
  15.      * This code guarantees that either everything succeeds and the 
  16.      * TTY is ready for operation, or else the table slots are vacated 
  17.      * and the allocated memory released.  (Except that the termios 
  18.      * and locked termios may be retained.) 
  19.      */  
  20.   
  21.     if (!try_module_get(driver->owner))  
  22.         return ERR_PTR(-ENODEV);  
  23.   
  24.     tty = alloc_tty_struct();  
  25.     if (!tty)  
  26.         goto fail_no_mem;  
  27.     "color: rgb(255, 0, 0);">initialize_tty_struct(tty, driver, idx);  
  28.   
  29.     retval = tty_driver_install_tty(driver, tty);  
  30.     if (retval < 0) {  
  31.         free_tty_struct(tty);  
  32.         module_put(driver->owner);  
  33.         return ERR_PTR(retval);  
  34.     }  
  35.   
  36.     /* 
  37.      * Structures all installed ... call the ldisc open routines. 
  38.      * If we fail here just call release_tty to clean up.  No need 
  39.      * to decrement the use counts, as release_tty doesn't care. 
  40.      */  
  41.     retval = tty_ldisc_setup(tty, tty->link);  
  42.     if (retval)  
  43.         goto release_mem_out;  
  44.     return tty;  
  45.   
  46. fail_no_mem:  
  47.     module_put(driver->owner);  
  48.     return ERR_PTR(-ENOMEM);  
  49.   
  50.     /* call the tty release_tty routine to clean out this slot */  
  51. release_mem_out:  
  52.     if (printk_ratelimit())  
  53.         printk(KERN_INFO "tty_init_dev: ldisc open failed, "  
  54.                  "clearing slot %d\n", idx);  
  55.     release_tty(tty, idx);  
  56.     return ERR_PTR(retval);  
  57. }  
struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx, int first_ok) { struct tty_struct *tty; int retval; /* Check if pty master is being opened multiple times */ if (driver->subtype == PTY_TYPE_MASTER && (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) { return ERR_PTR(-EIO); } /* * First time open is complex, especially for PTY devices. * This code guarantees that either everything succeeds and the * TTY is ready for operation, or else the table slots are vacated * and the allocated memory released. (Except that the termios * and locked termios may be retained.) */ if (!try_module_get(driver->owner)) return ERR_PTR(-ENODEV); tty = alloc_tty_struct(); if (!tty) goto fail_no_mem; initialize_tty_struct(tty, driver, idx); retval = tty_driver_install_tty(driver, tty); if (retval < 0) { free_tty_struct(tty); module_put(driver->owner); return ERR_PTR(retval); } /* * Structures all installed ... call the ldisc open routines. * If we fail here just call release_tty to clean up. No need * to decrement the use counts, as release_tty doesn't care. */ retval = tty_ldisc_setup(tty, tty->link); if (retval) goto release_mem_out; return tty; fail_no_mem: module_put(driver->owner); return ERR_PTR(-ENOMEM); /* call the tty release_tty routine to clean out this slot */ release_mem_out: if (printk_ratelimit()) printk(KERN_INFO "tty_init_dev: ldisc open failed, " "clearing slot %d\n", idx); release_tty(tty, idx); return ERR_PTR(retval); }

这个函数首先是给tty_struct分配好内存,然后将其初始化,初始化的工作在函数

  1. initialize_tty_struct(tty, driver, idx);  
initialize_tty_struct(tty, driver, idx);中完成。参数tty为待初始化的tty_struct,driver为前面通过get_tty_driver获得的tty_driver,index为具体的索引号,同样是通过get_tty_driver获得的,此处index值为0。

初始化的tty_struct部分信息来自于tty_driver,所以将tty_driver传递进此函数。

具体的initialize_tty_struct函数如下

  1. void initialize_tty_struct(struct tty_struct *tty,  
  2.         struct tty_driver *driver, int idx)  
  3. {  
  4.     memset(tty, 0, sizeof(struct tty_struct));  
  5.     kref_init(&tty->kref);  
  6.     tty->magic = TTY_MAGIC;  
  7.     "color: rgb(255, 0, 0);">tty_ldisc_init(tty);  
  8.     tty->session = NULL;  
  9.     tty->pgrp = NULL;  
  10.     tty->overrun_time = jiffies;  
  11.     tty->buf.head = tty->buf.tail = NULL;  
  12.     tty_buffer_init(tty);  
  13.     mutex_init(&tty->termios_mutex);  
  14.     mutex_init(&tty->ldisc_mutex);  
  15.     init_waitqueue_head(&tty->write_wait);  
  16.     init_waitqueue_head(&tty->read_wait);  
  17.     INIT_WORK(&tty->hangup_work, do_tty_hangup);  
  18.     mutex_init(&tty->atomic_read_lock);  
  19.     mutex_init(&tty->atomic_write_lock);  
  20.     mutex_init(&tty->output_lock);  
  21.     mutex_init(&tty->echo_lock);  
  22.     spin_lock_init(&tty->read_lock);  
  23.     spin_lock_init(&tty->ctrl_lock);  
  24.     INIT_LIST_HEAD(&tty->tty_files);  
  25.     INIT_WORK(&tty->SAK_work, do_SAK_work);  
  26.   
  27.     tty->driver = driver;  
  28.     "color: rgb(255, 0, 0);">tty->ops = driver->ops;  
  29.     "color: rgb(255, 0, 0);">tty->index = idx;  
  30.     tty_line_name(driver, idx, tty->name);  
  31.     tty->dev = tty_get_device(tty);  
  32. }  
void initialize_tty_struct(struct tty_struct *tty, struct tty_driver *driver, int idx) { memset(tty, 0, sizeof(struct tty_struct)); kref_init(&tty->kref); tty->magic = TTY_MAGIC; tty_ldisc_init(tty); tty->session = NULL; tty->pgrp = NULL; tty->overrun_time = jiffies; tty->buf.head = tty->buf.tail = NULL; tty_buffer_init(tty); mutex_init(&tty->termios_mutex); mutex_init(&tty->ldisc_mutex); init_waitqueue_head(&tty->write_wait); init_waitqueue_head(&tty->read_wait); INIT_WORK(&tty->hangup_work, do_tty_hangup); mutex_init(&tty->atomic_read_lock); mutex_init(&tty->atomic_write_lock); mutex_init(&tty->output_lock); mutex_init(&tty->echo_lock); spin_lock_init(&tty->read_lock); spin_lock_init(&tty->ctrl_lock); INIT_LIST_HEAD(&tty->tty_files); INIT_WORK(&tty->SAK_work, do_SAK_work); tty->driver = driver; tty->ops = driver->ops; tty->index = idx; tty_line_name(driver, idx, tty->name); tty->dev = tty_get_device(tty); }初始化中最重要的两步已标红,其中第一步和tty线路规程相关。之前分析过tty线路规程初始化部分的代码,

而这里的初始化就是根据数组的索引号,从前面初始化好的tty线路规程操作方法数组中获取对应的操作方法,然后将其填充到

tty_struct中对应的域中。具体如下

  1. void tty_ldisc_init(struct tty_struct *tty)  
  2. {  
  3.     struct tty_ldisc *ld = tty_ldisc_get(N_TTY);  
  4.     if (IS_ERR(ld))  
  5.         panic("n_tty: init_tty");  
  6.     tty_ldisc_assign(tty, ld);  
  7. }  
void tty_ldisc_init(struct tty_struct *tty) { struct tty_ldisc *ld = tty_ldisc_get(N_TTY); if (IS_ERR(ld)) panic("n_tty: init_tty"); tty_ldisc_assign(tty, ld); }可见索引号是N_TTY,也就是tty_ldiscs[0]中的tty线路规程操纵方法集,tty_ldiscs[0]对应的具体操作集如下
  1. struct tty_ldisc_ops tty_ldisc_N_TTY = {    
  2.     .magic           = TTY_LDISC_MAGIC,    
  3.     .name            = "n_tty",    
  4.     .open            = n_tty_open,    
  5.     .close           = n_tty_close,    
  6.     .flush_buffer    = n_tty_flush_buffer,    
  7.     .chars_in_buffer = n_tty_chars_in_buffer,    
  8.     .read            = n_tty_read,    
  9.     .write           = n_tty_write,    
  10.     .ioctl           = n_tty_ioctl,    
  11.     .set_termios     = n_tty_set_termios,    
  12.     .poll            = n_tty_poll,    
  13.     .receive_buf     = n_tty_receive_buf,    
  14.     .write_wakeup    = n_tty_write_wakeup    
  15. };    
struct tty_ldisc_ops tty_ldisc_N_TTY = { .magic = TTY_LDISC_MAGIC, .name = "n_tty", .open = n_tty_open, .close = n_tty_close, .flush_buffer = n_tty_flush_buffer, .chars_in_buffer = n_tty_chars_in_buffer, .read = n_tty_read, .write = n_tty_write, .ioctl = n_tty_ioctl, .set_termios = n_tty_set_termios, .poll = n_tty_poll, .receive_buf = n_tty_receive_buf, .write_wakeup = n_tty_write_wakeup }; 在write过程中会调用其中的方法。tty_write->n_tty_write。

最后通过函数

  1. tty_ldisc_assign(tty, ld);  
tty_ldisc_assign(tty, ld);将其填充到tty_struct中。

在这个tty_struct的初始化函数还需要注意的是

  1. tty->ops = driver->ops;  
tty->ops = driver->ops;也就是将tty_struct中的ops设置成tty_driver中的ops。后面write、read的操作调用的是tty_struct中的ops而非tty_driver

中的ops

此处的tty_driver的ops在uart_register_driver中被设置成如下

  1. static const struct tty_operations uart_ops = {  
  2.     .open       = uart_open,  
  3.     .close      = uart_close,  
  4.     .write      = uart_write,  
  5.     .put_char   = uart_put_char,  
  6.     .flush_chars    = uart_flush_chars,  
  7.     .write_room = uart_write_room,  
  8.     .chars_in_buffer= uart_chars_in_buffer,  
  9.     .flush_buffer   = uart_flush_buffer,  
  10.     .ioctl      = uart_ioctl,  
  11.     .throttle   = uart_throttle,  
  12.     .unthrottle = uart_unthrottle,  
  13.     .send_xchar = uart_send_xchar,  
  14.     .set_termios    = uart_set_termios,  
  15.     .set_ldisc  = uart_set_ldisc,  
  16.     .stop       = uart_stop,  
  17.     .start      = uart_start,  
  18.     .hangup     = uart_hangup,  
  19.     .break_ctl  = uart_break_ctl,  
  20.     .wait_until_sent= uart_wait_until_sent,  
  21. #ifdef CONFIG_PROC_FS  
  22.     .proc_fops  = &uart_proc_fops,  
  23. #endif  
  24.     .tiocmget   = uart_tiocmget,  
  25.     .tiocmset   = uart_tiocmset,  
  26.     .get_icount = uart_get_icount,  
  27. #ifdef CONFIG_CONSOLE_POLL  
  28.     .poll_init  = uart_poll_init,  
  29.     .poll_get_char  = uart_poll_get_char,  
  30.     .poll_put_char  = uart_poll_put_char,  
  31. #endif  
  32. };  
static const struct tty_operations uart_ops = { .open = uart_open, .close = uart_close, .write = uart_write, .put_char = uart_put_char, .flush_chars = uart_flush_chars, .write_room = uart_write_room, .chars_in_buffer= uart_chars_in_buffer, .flush_buffer = uart_flush_buffer, .ioctl = uart_ioctl, .throttle = uart_throttle, .unthrottle = uart_unthrottle, .send_xchar = uart_send_xchar, .set_termios = uart_set_termios, .set_ldisc = uart_set_ldisc, .stop = uart_stop, .start = uart_start, .hangup = uart_hangup, .break_ctl = uart_break_ctl, .wait_until_sent= uart_wait_until_sent, #ifdef CONFIG_PROC_FS .proc_fops = &uart_proc_fops, #endif .tiocmget = uart_tiocmget, .tiocmset = uart_tiocmset, .get_icount = uart_get_icount, #ifdef CONFIG_CONSOLE_POLL .poll_init = uart_poll_init, .poll_get_char = uart_poll_get_char, .poll_put_char = uart_poll_put_char, #endif };
接着函数返回到tty_init_dev函数中继续往下执行。

调用函数

  1. retval = tty_driver_install_tty(driver, tty);  
retval = tty_driver_install_tty(driver, tty);这个函数的主要作用就是将这个初始化好的

tty_struct存放到tty_driver的tty_structs[]数组中,存放的位置依据tty-struct->index

这样可以tty_driver中每个设备都可以根据index找到对应的tty_struct了。

最后再次返回tty_init_dev函数中执行

  1. retval = tty_ldisc_setup(tty, tty->link);  
retval = tty_ldisc_setup(tty, tty->link);
这个函数会调用tty线路规程中的open方法n_tty_open函数

n_tty_open中主要完成buff缓冲区大小设置的工作,具体不展开了(其实我也没仔细分析)。

最后这个tty_struct的初始化函数彻底执行完毕,退到tty_open函数中继续执行后续代码。

在tty_open中会被执行到的代码是

  1. retval = tty->ops->open(tty, filp);  
retval = tty->ops->open(tty, filp);
这里就是tty-struct中的ops,在tty_struct初始化的时候被赋值成tty_driver的ops,所以这里调用到的就是

uart_open函数。uart_open函数的重要作用是找到之前初始化的时候保存在tty_driver中的uart_state,因为这里面还有uart_port的重要信息。

找到这个uart_state后将其赋值给tty_struct。具体的uart_open函数如下

  1. static int uart_open(struct tty_struct *tty, struct file *filp)  
  2. {  
  3.     struct uart_driver *drv = (struct uart_driver *)tty->driver->driver_state;  
  4.     struct uart_state *state;  
  5.     struct tty_port *port;  
  6.     int retval, line = tty->index;  
  7.   
  8.     BUG_ON(!tty_locked());  
  9.     pr_debug("uart_open(%d) called\n", line);  
  10.   
  11.     /* 
  12.      * tty->driver->num won't change, so we won't fail here with 
  13.      * tty->driver_data set to something non-NULL (and therefore 
  14.      * we won't get caught by uart_close()). 
  15.      */  
  16.     retval = -ENODEV;  
  17.     if (line >= tty->driver->num)  
  18.         goto fail;  
  19.   
  20.     /* 
  21.      * We take the semaphore inside uart_get to guarantee that we won't 
  22.      * be re-entered while allocating the state structure, or while we 
  23.      * request any IRQs that the driver may need.  This also has the nice 
  24.      * side-effect that it delays the action of uart_hangup, so we can 
  25.      * guarantee that state->port.tty will always contain something 
  26.      * reasonable. 
  27.      */  
  28.     "color: rgb(255, 0, 0);">state = uart_get(drv, line);  
  29.     if (IS_ERR(state)) {  
  30.         retval = PTR_ERR(state);  
  31.         goto fail;  
  32.     }  
  33.     port = &state->port;  
  34.   
  35.     /* 
  36.      * Once we set tty->driver_data here, we are guaranteed that 
  37.      * uart_close() will decrement the driver module use count. 
  38.      * Any failures from here onwards should not touch the count. 
  39.      */  
  40.     "color: rgb(255, 0, 0);">tty->driver_data = state;  
  41.     state->uart_port->state = state;  
  42.     tty->low_latency = (state->uart_port->flags & UPF_LOW_LATENCY) ? 1 : 0;  
  43.     tty->alt_speed = 0;  
  44.     tty_port_tty_set(port, tty);  
  45.   
  46.     /* 
  47.      * If the port is in the middle of closing, bail out now. 
  48.      */  
  49.     if (tty_hung_up_p(filp)) {  
  50.         retval = -EAGAIN;  
  51.         port->count--;  
  52.         mutex_unlock(&port->mutex);  
  53.         goto fail;  
  54.     }  
  55.   
  56.     /* 
  57.      * Make sure the device is in D0 state. 
  58.      */  
  59.     if (port->count == 1)  
  60.         uart_change_pm(state, 0);  
  61.   
  62.     /* 
  63.      * Start up the serial port. 
  64.      */  
  65.     "color: rgb(255, 0, 0);">retval = uart_startup(tty, state, 0);  
  66.   
  67.     /* 
  68.      * If we succeeded, wait until the port is ready. 
  69.      */  
  70.     mutex_unlock(&port->mutex);  
  71.     if (retval == 0)  
  72.         retval = tty_port_block_til_ready(port, tty, filp);  
  73.   
  74. fail:  
  75.     return retval;  
  76. }  
static int uart_open(struct tty_struct *tty, struct file *filp) { struct uart_driver *drv = (struct uart_driver *)tty->driver->driver_state; struct uart_state *state; struct tty_port *port; int retval, line = tty->index; BUG_ON(!tty_locked()); pr_debug("uart_open(%d) called\n", line); /* * tty->driver->num won't change, so we won't fail here with * tty->driver_data set to something non-NULL (and therefore * we won't get caught by uart_close()). */ retval = -ENODEV; if (line >= tty->driver->num) goto fail; /* * We take the semaphore inside uart_get to guarantee that we won't * be re-entered while allocating the state structure, or while we * request any IRQs that the driver may need. This also has the nice * side-effect that it delays the action of uart_hangup, so we can * guarantee that state->port.tty will always contain something * reasonable. */ state = uart_get(drv, line); if (IS_ERR(state)) { retval = PTR_ERR(state); goto fail; } port = &state->port; /* * Once we set tty->driver_data here, we are guaranteed that * uart_close() will decrement the driver module use count. * Any failures from here onwards should not touch the count. */ tty->driver_data = state; state->uart_port->state = state; tty->low_latency = (state->uart_port->flags & UPF_LOW_LATENCY) ? 1 : 0; tty->alt_speed = 0; tty_port_tty_set(port, tty); /* * If the port is in the middle of closing, bail out now. */ if (tty_hung_up_p(filp)) { retval = -EAGAIN; port->count--; mutex_unlock(&port->mutex); goto fail; } /* * Make sure the device is in D0 state. */ if (port->count == 1) uart_change_pm(state, 0); /* * Start up the serial port. */ retval = uart_startup(tty, state, 0); /* * If we succeeded, wait until the port is ready. */ mutex_unlock(&port->mutex); if (retval == 0) retval = tty_port_block_til_ready(port, tty, filp); fail: return retval; }函数通过
  1. state = uart_get(drv, line);  
state = uart_get(drv, line);
来找到保存在tty_driver中的uart_state。

最后将其值赋值给tty_struct。此处特别注意一下,这个uart_state会被放到tty_struct的driver_data中的!因为后面的write、read都是从driver_data中找到这个uar_state的!

最后函数条用uart_startup函数来初始化串口硬件

  1.     retval = uart_startup(tty, state, 0);  
    retval = uart_startup(tty, state, 0);函数参数tty对应的就是tty_struct,state就是从tty_driver中找到的uart_state

具体的uart_startup函数如下

  1. static int uart_startup(struct tty_struct *tty, struct uart_state *state, int init_hw)  
  2. {  
  3.     struct uart_port *uport = state->uart_port;  
  4.     struct tty_port *port = &state->port;  
  5.     unsigned long page;  
  6.     int retval = 0;  
  7.   
  8.     if (port->flags & ASYNC_INITIALIZED)  
  9.         return 0;  
  10.   
  11.     /* 
  12.      * Set the TTY IO error marker - we will only clear this 
  13.      * once we have successfully opened the port.  Also set 
  14.      * up the tty->alt_speed kludge 
  15.      */  
  16.     set_bit(TTY_IO_ERROR, &tty->flags);  
  17.   
  18.     if (uport->type == PORT_UNKNOWN)  
  19.         return 0;  
  20.   
  21.     /* 
  22.      * Initialise and allocate the transmit and temporary 
  23.      * buffer. 
  24.      */  
  25.     if (!state->xmit.buf) {  
  26.         /* This is protected by the per port mutex */  
  27.         page = get_zeroed_page(GFP_KERNEL);  
  28.         if (!page)  
  29.             return -ENOMEM;  
  30.   
  31.         state->xmit.buf = (unsigned char *) page;  
  32.         uart_circ_clear(&state->xmit);  
  33.     }  
  34.   
  35.     "color: rgb(255, 0, 0);">retval = uport->ops->startup(uport);  
  36.     if (retval == 0) {  
  37.         if (init_hw) {  
  38.             /* 
  39.              * Initialise the hardware port settings. 
  40.              */  
  41.             uart_change_speed(tty, state, NULL);  
  42.   
  43.             /* 
  44.              * Setup the RTS and DTR signals once the 
  45.              * port is open and ready to respond. 
  46.              */  
  47.             if (tty->termios->c_cflag & CBAUD)  
  48.                 uart_set_mctrl(uport, TIOCM_RTS | TIOCM_DTR);  
  49.         }  
  50.   
  51.         if (port->flags & ASYNC_CTS_FLOW) {  
  52.             spin_lock_irq(&uport->lock);  
  53.             if (!(uport->ops->get_mctrl(uport) & TIOCM_CTS))  
  54.                 tty->hw_stopped = 1;  
  55.             spin_unlock_irq(&uport->lock);  
  56.         }  
  57.   
  58.         set_bit(ASYNCB_INITIALIZED, &port->flags);  
  59.   
  60.         clear_bit(TTY_IO_ERROR, &tty->flags);  
  61.     }  
  62.   
  63.     if (retval && capable(CAP_SYS_ADMIN))  
  64.         retval = 0;  
  65.   
  66.     return retval;  
  67. }  
static int uart_startup(struct tty_struct *tty, struct uart_state *state, int init_hw) { struct uart_port *uport = state->uart_port; struct tty_port *port = &state->port; unsigned long page; int retval = 0; if (port->flags & ASYNC_INITIALIZED) return 0; /* * Set the TTY IO error marker - we will only clear this * once we have successfully opened the port. Also set * up the tty->alt_speed kludge */ set_bit(TTY_IO_ERROR, &tty->flags); if (uport->type == PORT_UNKNOWN) return 0; /* * Initialise and allocate the transmit and temporary * buffer. */ if (!state->xmit.buf) { /* This is protected by the per port mutex */ page = get_zeroed_page(GFP_KERNEL); if (!page) return -ENOMEM; state->xmit.buf = (unsigned char *) page; uart_circ_clear(&state->xmit); } retval = uport->ops->startup(uport); if (retval == 0) { if (init_hw) { /* * Initialise the hardware port settings. */ uart_change_speed(tty, state, NULL); /* * Setup the RTS and DTR signals once the * port is open and ready to respond. */ if (tty->termios->c_cflag & CBAUD) uart_set_mctrl(uport, TIOCM_RTS | TIOCM_DTR); } if (port->flags & ASYNC_CTS_FLOW) { spin_lock_irq(&uport->lock); if (!(uport->ops->get_mctrl(uport) & TIOCM_CTS)) tty->hw_stopped = 1; spin_unlock_irq(&uport->lock); } set_bit(ASYNCB_INITIALIZED, &port->flags); clear_bit(TTY_IO_ERROR, &tty->flags); } if (retval && capable(CAP_SYS_ADMIN)) retval = 0; return retval; } 此函数的作用就是初始化s3c2440的uart,其中最重要的是调用了s3c2440的硬件操作函数集中的startup方法,

即uart_port的ops,此ops在初始化的时候被初始化为

  1. static struct uart_ops s3c24xx_serial_ops = {  
  2.     .pm     = s3c24xx_serial_pm,  
  3.     .tx_empty   = s3c24xx_serial_tx_empty,  
  4.     .get_mctrl  = s3c24xx_serial_get_mctrl,  
  5.     .set_mctrl  = s3c24xx_serial_set_mctrl,  
  6.     .stop_tx    = s3c24xx_serial_stop_tx,  
  7.     .start_tx   = s3c24xx_serial_start_tx,  
  8.     .stop_rx    = s3c24xx_serial_stop_rx,  
  9.     .enable_ms  = s3c24xx_serial_enable_ms,  
  10.     .break_ctl  = s3c24xx_serial_break_ctl,  
  11.     .startup    = s3c24xx_serial_startup,  
  12.     .shutdown   = s3c24xx_serial_shutdown,  
  13.     .set_termios    = s3c24xx_serial_set_termios,  
  14.     .type       = s3c24xx_serial_type,  
  15.     .release_port   = s3c24xx_serial_release_port,  
  16.     .request_port   = s3c24xx_serial_request_port,  
  17.     .config_port    = s3c24xx_serial_config_port,  
  18.     .verify_port    = s3c24xx_serial_verify_port,  
  19. };  
static struct uart_ops s3c24xx_serial_ops = { .pm = s3c24xx_serial_pm, .tx_empty = s3c24xx_serial_tx_empty, .get_mctrl = s3c24xx_serial_get_mctrl, .set_mctrl = s3c24xx_serial_set_mctrl, .stop_tx = s3c24xx_serial_stop_tx, .start_tx = s3c24xx_serial_start_tx, .stop_rx = s3c24xx_serial_stop_rx, .enable_ms = s3c24xx_serial_enable_ms, .break_ctl = s3c24xx_serial_break_ctl, .startup = s3c24xx_serial_startup, .shutdown = s3c24xx_serial_shutdown, .set_termios = s3c24xx_serial_set_termios, .type = s3c24xx_serial_type, .release_port = s3c24xx_serial_release_port, .request_port = s3c24xx_serial_request_port, .config_port = s3c24xx_serial_config_port, .verify_port = s3c24xx_serial_verify_port, };所以此处直接调用的是s3c24xx_serial_startup函数,此函数如下。
  1. static int s3c24xx_serial_startup(struct uart_port *port)  
  2. {  
  3.     struct s3c24xx_uart_port *ourport = to_ourport(port);  
  4.     int ret;  
  5.   
  6.     dbg("s3c24xx_serial_startup: port=%p (%08lx,%p)\n",  
  7.         port->mapbase, port->membase);  
  8.   
  9.     rx_enabled(port) = 1;  
  10.   
  11. "color: rgb(255, 0, 0);">   ret = request_irq(ourport->rx_irq, s3c24xx_serial_rx_chars, 0,  
  12.               s3c24xx_serial_portname(port), ourport);  
  13.   
  14.     if (ret != 0) {  
  15.         printk(KERN_ERR "cannot get irq %d\n", ourport->rx_irq);  
  16.         return ret;  
  17.     }  
  18.   
  19.     ourport->rx_claimed = 1;  
  20.   
  21.     dbg("requesting tx irq...\n");  
  22.   
  23.     tx_enabled(port) = 1;  
  24.   
  25. "color: rgb(255, 0, 0);">   ret = request_irq(ourport->tx_irq, s3c24xx_serial_tx_chars, 0,  
  26.               s3c24xx_serial_portname(port), ourport);  
  27.   
  28.     if (ret) {  
  29.         printk(KERN_ERR "cannot get irq %d\n", ourport->tx_irq);  
  30.         goto err;  
  31.     }  
  32.   
  33.     ourport->tx_claimed = 1;  
  34.   
  35.     dbg("s3c24xx_serial_startup ok\n");  
  36.   
  37.     /* the port reset code should have done the correct 
  38.      * register setup for the port controls */  
  39.   
  40.     return ret;  
  41.   
  42.  err:  
  43.     s3c24xx_serial_shutdown(port);  
  44.     return ret;  
  45. }  
static int s3c24xx_serial_startup(struct uart_port *port) { struct s3c24xx_uart_port *ourport = to_ourport(port); int ret; dbg("s3c24xx_serial_startup: port=%p (%08lx,%p)\n", port->mapbase, port->membase); rx_enabled(port) = 1; ret = request_irq(ourport->rx_irq, s3c24xx_serial_rx_chars, 0, s3c24xx_serial_portname(port), ourport); if (ret != 0) { printk(KERN_ERR "cannot get irq %d\n", ourport->rx_irq); return ret; } ourport->rx_claimed = 1; dbg("requesting tx irq...\n"); tx_enabled(port) = 1; ret = request_irq(ourport->tx_irq, s3c24xx_serial_tx_chars, 0, s3c24xx_serial_portname(port), ourport); if (ret) { printk(KERN_ERR "cannot get irq %d\n", ourport->tx_irq); goto err; } ourport->tx_claimed = 1; dbg("s3c24xx_serial_startup ok\n"); /* the port reset code should have done the correct * register setup for the port controls */ return ret; err: s3c24xx_serial_shutdown(port); return ret; }
其作用还是初始化,主要初始化的是s3c24xx的uart的中断。

设置uart的发送中断,接收中断处理函数。

至此,通过open函数后s3c24xx的uart硬件部分也初始化好了,接着可以通过write、read函数收发数据了。

总结下

open的主要作用是 在内核通过创建并初始化一个tty_struct来描述具体对应的一个硬件设备,比如这里就是用一个tty_struct来描述s3c24xx上的uart0的,然后找到uart_port

中ops的startup方法初始化uart的硬件。

具体的tty_struct初始化过程中最重要的几步如下

1.初始化tty-struct的ops,就是将tty_driver中的ops赋值给tty_struct

2.初始化tty线路规程操作集

3.初始化tty_struct中的uart_state,uart_state中包含uart_port信息,这一步通过步骤1中ops中的open方法来完成。

4.根据步骤3中找到的uart_state,找到里面的uart_port的ops中的startup方法来初始化uart硬件。

open的流程大致如下:

open

--tty_open

    |

    --get_tty_driver

    --tty_init_dev

    --tty->ops->open(uart_open)

        |

        --uart_startup

            |

            --uport->ops->startup(s3c24xx_serial_startup())

                |

                --request_irq(rx_irq)

                --request_irq(tx_irq)

中断处理函数如下:

s3c24xx_serial_rx_chars

s3c24xx_serial_tx_chars
阅读(5327) | 评论(0) | 转发(3) |
给主人留下些什么吧!~~