全部博文(137)
分类:
2010-07-16 21:18:12
有三个人 一个是你,一个是和先生,一个是积先生 你先想好两个整数(2到99之间) 然后将两数之和告诉和先生,两数之积告诉积先生 下面是和先生和积先生的对话 和先生:我知道你不知道这两个数是什么,我也不知道这两个数是什么 积先生:我现在知道这两个数是什么了 和先生:我现在也知道了 看了上面的对话,可以推断出这两个数是什么
以下是百度贴吧一个人的答案:
因为和先生知道两数之和,却由此推断积先生不知道两个数,所以说两数之和和先生一定不能拆分成两个质数的和,即m,n不可能都是质数,且m,n中不会有大于50的质数,否则的话m*n可以唯一分解,积先生知道了m,n的积就一定可以知道m,n了。
积先生从和先生的言语中能够判断出的信息是:
1。m,n不会全是质数;
2。m,n中不会有大于50的质数;
3。m,n之和不能拆成两个质数的和;
4。因为和先生自己也不知道这两个数是什么,所以这两个数的和一定小于99+98,否则和先生就可以知道这两个数是什么了。
满足以上条件的 和=m+n有以下的可能:
11
17
23
27
29
35
37
41
47
196
然后积先生根据自己掌握的 积=m*n立即算出m,n,这说明 积=m*n是具有以下性质的特殊数字:
根据这个特殊的积,当和先生取上面的那些值的时候,只有一种和的取值使得方程
m+n=和,
m*n=积
在[2,99]内有唯一的整数解。
根据这个性质计算出的积先生有以下的情况:
积 = 18, 和= 11, m = 2, n = 9
积 = 24, 和= 11, m = 3, n = 8
积 = 28, 和= 11, m = 4, n = 7
积 = 50, 和= 27, m = 2, n = 25
积 = 52, 和= 17, m = 4, n = 13
积 = 54, 和= 29, m = 2, n = 27
积 = 76, 和= 23, m = 4, n = 19
积 = 92, 和= 27, m = 4, n = 23
积 = 96, 和= 35, m = 3, n = 32
积 = 100, 和= 29, m = 4, n = 25
积 = 110, 和= 27, m = 5, n = 22
积 = 112, 和= 23, m = 7, n = 16
积 = 114, 和= 41, m = 3, n = 38
积 = 124, 和= 35, m = 4, n = 31
积 = 130, 和= 23, m = 10, n = 13
积 = 138, 和= 29, m = 6, n = 23
积 = 140, 和= 27, m = 7, n = 20
积 = 148, 和= 41, m = 4, n = 37
积 = 150, 和= 35, m = 5, n = 30
积 = 152, 和= 27, m = 8, n = 19
积 = 154, 和= 29, m = 7, n = 22
积 = 160, 和= 37, m = 5, n = 32
积 = 162, 和= 27, m = 9, n = 18
积 = 168, 和= 29, m = 8, n = 21
积 = 170, 和= 27, m = 10, n = 17
积 = 172, 和= 47, m = 4, n = 43
积 = 174, 和= 35, m = 6, n = 29
积 = 176, 和= 27, m = 11, n = 16
积 = 182, 和= 27, m = 13, n = 14
积 = 186, 和= 37, m = 6, n = 31
积 = 190, 和= 29, m = 10, n = 19
积 = 196, 和= 35, m = 7, n = 28
积 = 198, 和= 29, m = 11, n = 18
积 = 204, 和= 29, m = 12, n = 17
积 = 208, 和= 29, m = 13, n = 16
积 = 216, 和= 35, m = 8, n = 27
积 = 232, 和= 37, m = 8, n = 29
积 = 234, 和= 35, m = 9, n = 26
积 = 238, 和= 41, m = 7, n = 34
积 = 246, 和= 47, m = 6, n = 41
积 = 250, 和= 35, m = 10, n = 25
积 = 252, 和= 37, m = 9, n = 28
积 = 270, 和= 37, m = 10, n = 27
积 = 276, 和= 35, m = 12, n = 23
积 = 280, 和= 47, m = 7, n = 40
积 = 288, 和= 41, m = 9, n = 32
积 = 294, 和= 35, m = 14, n = 21
积 = 304, 和= 35, m = 16, n = 19
积 = 306, 和= 35, m = 17, n = 18
积 = 310, 和= 41, m = 10, n = 31
积 = 322, 和= 37, m = 14, n = 23
积 = 336, 和= 37, m = 16, n = 21
积 = 340, 和= 37, m = 17, n = 20
积 = 348, 和= 41, m = 12, n = 29
积 = 364, 和= 41, m = 13, n = 28
积 = 370, 和= 47, m = 10, n = 37
积 = 378, 和= 41, m = 14, n = 27
积 = 390, 和= 41, m = 15, n = 26
积 = 396, 和= 47, m = 11, n = 36
积 = 400, 和= 41, m = 16, n = 25
积 = 408, 和= 41, m = 17, n = 24
积 = 414, 和= 41, m = 18, n = 23
积 = 418, 和= 41, m = 19, n = 22
积 = 442, 和= 47, m = 13, n = 34
积 = 462, 和= 47, m = 14, n = 33
积 = 480, 和= 47, m = 15, n = 32
积 = 496, 和= 47, m = 16, n = 31
积 = 510, 和= 47, m = 17, n = 30
积 = 522, 和= 47, m = 18, n = 29
积 = 532, 和= 47, m = 19, n = 28
积 = 540, 和= 47, m = 20, n = 27
积 = 546, 和= 47, m = 21, n = 26
积 = 550, 和= 47, m = 22, n = 25
积 = 552, 和= 47, m = 23, n = 24
积 = 9604, 和= 196, m = 98, n = 98
最后积先生说出自己已经知道m,n以后,和先生也说自己知道了m,n,这说明和先生根据自己手中的两数之和可以推断出唯一的m,n来。
因此还要去除上面的情况中重复用到和先生的情况,得到下面的情况:
积 = 52, 和 = 17, m = 4, n = 13
积 = 9604, 和 = 196, m = 98, n = 98
如果规定了m不等于n,则最后的解答就是
m=4 , n=13
很严谨的逻辑,精准的推理,让我想起黑书上的一道递归题: