Chinaunix首页 | 论坛 | 博客
  • 博客访问: 489356
  • 博文数量: 174
  • 博客积分: 130
  • 博客等级: 入伍新兵
  • 技术积分: 587
  • 用 户 组: 普通用户
  • 注册时间: 2011-01-12 19:39
文章分类

全部博文(174)

文章存档

2018年(2)

2016年(10)

2015年(6)

2014年(31)

2013年(92)

2012年(33)

我的朋友

分类: LINUX

2015-08-23 13:04:02

SOCKET   编程的难点就在于 它一定是与多线程接合在一起的, 由于网络是一种延时很大地外部设备,与网络打交道处处要使用多线程。

SOCKET的原理也不难理解,但要做出好产品,要点就是不要有时延性。

下面附一个最简短的进入Socket世界的短文,其实要做出好的网络软件,仅仅使用MFC提供的CSocket类是远远不够的。

====================================================================================

什么是Socket
  Socket接口是TCP/IP网络的API,Socket接口定义了许多函数或例程,程序员可以用它们来开发TCP/IP网络上的应用程序。要学Internet上的TCP/IP网络编程,必须理解Socket接口。
   Socket接口设计者最先是将接口放在Unix操作系统里面的。如果了解Unix系统的输入和输出的话,就很容易了解Socket了。网络的 Socket数据传输是一种特殊的I/O,Socket也是一种文件描述符。Socket也具有一个类似于打开文件的函数调用Socket(),该函数返 回一个整型的Socket描述符,随后的连接建立、数据传输等操作都是通过该Socket实现的。常用的Socket类型有两种:流式Socket (SOCK_STREAM)和数据报式Socket(SOCK_DGRAM)。流式是一种面向连接的Socket,针对于面向连接的TCP服务应用;数据 报式Socket是一种无连接的Socket,对应于无连接的UDP服务应用。

Socket建立
  为了建立Socket,程序可以调用Socket函数,该函数返回一个类似于文件描述符的句柄。socket函数原型为:
  int socket(int domain, int type, int protocol);
  domain指明所使用的协议族,通常为PF_INET,表示互联网协议族(TCP/IP协议族);type参数指定socket的类型:SOCK_STREAM 或SOCK_DGRAM,Socket接口还定义了原始Socket(SOCK_RAW),允许程序使用低层协议;protocol通常赋值"0"。Socket()调用返回一个整型socket描述符,你可以在后面的调用使用它。
  Socket描述符是一个指向内部数据结构的指针,它指向描述符表入口。调用Socket函数时,socket执行体将建立一个Socket,实际上"建立一个Socket"意味着为一个Socket数据结构分配存储空间。Socket执行体为你管理描述符表。
  两个网络程序之间的一个网络连接包括五种信息:通信协议、本地协议地址、本地主机端口、远端主机地址和远端协议端口。Socket数据结构中包含这五种信息。

Socket配置
   通过socket调用返回一个socket描述符后,在使用socket进行网络传输以前,必须配置该socket。面向连接的socket客户端通过 调用Connect函数在socket数据结构中保存本地和远端信息。无连接socket的客户端和服务端以及面向连接socket的服务端通过调用 bind函数来配置本地信息。
Bind函数将socket与本机上的一个端口相关联,随后你就可以在该端口监听服务请求。Bind函数原型为:
  int bind(int sockfd,struct sockaddr *my_addr, int addrlen);
  Sockfd是调用socket函数返回的socket描述符,my_addr是一个指向包含有本机IP地址及端口号等信息的sockaddr类型的指针;addrlen常被设置为sizeof(struct sockaddr)。
  struct sockaddr结构类型是用来保存socket信息的:
  struct sockaddr {
    unsigned short sa_family; /* 地址族, AF_xxx */
      char sa_data[14]; /* 14 字节的协议地址 */
   };
  sa_family一般为AF_INET,代表Internet(TCP/IP)地址族;sa_data则包含该socket的IP地址和端口号。
  另外还有一种结构类型:
  struct sockaddr_in {
   short int sin_family; /* 地址族 */
   unsigned short int sin_port; /* 端口号 */
   struct in_addr sin_addr; /* IP地址 */
   unsigned char sin_zero[8]; /* 填充0 以保持与struct sockaddr同样大小 */
  };
  这个结构更方便使用。sin_zero用来将sockaddr_in结构填充到与struct sockaddr同样的长度,可以用bzero()或memset()函数将其置为零。指向sockaddr_in 的指针和指向sockaddr的指针可以相互转换,这意味着如果一个函数所需参数类型是sockaddr时,你可以在函数调用的时候将一个指向sockaddr_in的指针转换为指向sockaddr的指针;或者相反。
  使用bind函数时,可以用下面的赋值实现自动获得本机IP地址和随机获取一个没有被占用的端口号:
  my_addr.sin_port = 0; /* 系统随机选择一个未被使用的端口号 */
  my_addr.sin_addr.s_addr = INADDR_ANY; /* 填入本机IP地址 */
通过将my_addr.sin_port置为0,函数会自动为你选择一个未占用的端口来使用。同样,通过将my_addr.sin_addr.s_addr置为INADDR_ANY,系统会自动填入本机IP地址。
注意在使用bind函数是需要将sin_port和sin_addr转换成为网络字节优先顺序;而sin_ family则不需要转换。
  计算机数据存储有两种字节优先顺序:高位字节优先和低位字节优先。Internet上数据以高位字节优先顺序在网络上传输,所以对于在内部是以低位字节优先方式存储数据的机器,在Internet上传输数据时就需要进行转换,否则就会出现数据不一致。
  下面是几个字节顺序转换函数:
·htonl():把32位值从主机字节序转换成网络字节序
·htons():把16位值从主机字节序转换成网络字节序
·ntohl():把32位值从网络字节序转换成主机字节序
·ntohs():把16位值从网络字节序转换成主机字节序
  Bind()函数在成功被调用时返回0;出现错误时返回"-1"并将errno置为相应的错误号。需要注意的是,在调用bind函数时一般不要将端口号置为小于1024的值,因为1到1024是保留端口号,你可以选择大于1024中的任何一个没有被占用的端口号。

连接建立
  面向连接的客户程序使用Connect函数来配置socket并与远端服务器建立一个TCP连接,其函数原型为:
  int connect(int sockfd, struct sockaddr *serv_addr,int addrlen);
Sockfd 是socket函数返回的socket描述符;serv_addr是包含远端主机IP地址和端口号的指针;addrlen是远端地质结构的长度。 Connect函数在出现错误时返回-1,并且设置errno为相应的错误码。进行客户端程序设计无须调用bind(),因为这种情况下只需知道目的机器 的IP地址,而客户通过哪个端口与服务器建立连接并不需要关心,socket执行体为你的程序自动选择一个未被占用的端口,并通知你的程序数据什么时候到 打断口。
  Connect函数启动和远端主机的直接连接。只有面向连接的客户程序使用socket时才需要将此socket与远端主机相连。无连接协议从不建立直接连接。面向连接的服务器也从不启动一个连接,它只是被动的在协议端口监听客户的请求。
  Listen函数使socket处于被动的监听模式,并为该socket建立一个输入数据队列,将到达的服务请求保存在此队列中,直到程序处理它们。
  int listen(int sockfd, int backlog);
Sockfd 是Socket系统调用返回的socket 描述符;backlog指定在请求队列中允许的最大请求数,进入的连接请求将在队列中等待accept()它们(参考下文)。Backlog对队列中等待 服务的请求的数目进行了限制,大多数系统缺省值为20。如果一个服务请求到来时,输入队列已满,该socket将拒绝连接请求,客户将收到一个出错信息。
当出现错误时listen函数返回-1,并置相应的errno错误码。
  accept()函数让服务器接收客户的连接请求。在建立好输入队列后,服务器就调用accept函数,然后睡眠并等待客户的连接请求。
  int accept(int sockfd, void *addr, int *addrlen);
  sockfd是被监听的socket描述符,addr通常是一个指向sockaddr_in变量的指针,该变量用来存放提出连接请求服务的主机的信息(某台主机从某个端口发出该请求);addrten通常为一个指向值为sizeof(struct sockaddr_in)的整型指针变量。出现错误时accept函数返回-1并置相应的errno值。
  首先,当accept函数监视的socket收到连接请求时,socket执行体将建立一个新的socket,执行体将这个新socket和请求连接进程的地址联系起来,收到服务请求的初始socket仍可以继续在以前的 socket上监听,同时可以在新的socket描述符上进行数据传输操作。

数据传输
  Send()和recv()这两个函数用于面向连接的socket上进行数据传输。
  Send()函数原型为:
  int send(int sockfd, const void *msg, int len, int flags);
Sockfd是你想用来传输数据的socket描述符;msg是一个指向要发送数据的指针;Len是以字节为单位的数据的长度;flags一般情况下置为0(关于该参数的用法可参照man手册)。

flags可以是0或者是以下的组合 
 _______________________________________________________________
|  MSG_DONTROUTE        |  不查找路由表                         |
|  MSG_OOB              |  接受或者发送带外数据                  |
|  MSG_PEEK             |  查看数据,并不从系统缓冲区移走数据      |
|  MSG_WAITALL          |  等待所有数据                         |
|--------------------------------------------------------------|

MSG_DONTROUTE:是send函数使用的标志.这个标志告诉IP协议.目的主机在本地网络上面,没有必要查找路由表.这个标志一般用网络诊断和路由程序里面. 
MSG_OOB:表示可以接收和发送带外的数据.关于带外数据我们以后会解释的. 

MSG_PEEK:是recv函数的使用标志,表示只是从系统缓冲区中读取内容,而不清楚系统缓冲区的内容.这样下次读的时候,仍然是一样的内容.一般在有多个进程读写数据时可以使用这个标志. 

MSG_WAITALL是recv函数的使用标志,表示等到所有的信息到达时才返回.使用这个标志的时候recv回一直阻塞,直到指定的条件满足,或者是发生了错误. 1)当读到了指定的字节时,函数正常返回.返回值等于len 2)当读到了文件的结尾时,函数正常返回.返回值小于len 3) 当操作发生错误时,返回-1,且设置错误为相应的错误号(errno) 

如果flags为0,则和read,write一样的操作.还有其它的几个选项,不过我们实际上用的很少,可以查看 Linux Programmer's Manual得到详细解释. 

  Send()函数返回实际上发送出的字节数,可能会少于你希望发送的数据。在程序中应该将send()的返回值与欲发送的字节数进行比较。当send()返回值与len不匹配时,应该对这种情况进行处理。
char *msg = "Hello!";
int len, bytes_sent;
……
len = strlen(msg);
bytes_sent = send(sockfd, msg,len,0);
……
  recv()函数原型为:
  int recv(int sockfd,void *buf,int len,unsigned int flags);
  Sockfd是接受数据的socket描述符;buf 是存放接收数据的缓冲区;len是缓冲的长度。Flags也被置为0。Recv()返回实际上接收的字节数,当出现错误时,返回-1并置相应的errno值。
Sendto()和recvfrom()用于在无连接的数据报socket方式下进行数据传输。由于本地socket并没有与远端机器建立连接,所以在发送数据时应指明目的地址。
sendto()函数原型为:
  int sendto(int sockfd, const void *msg,int len,unsigned int flags,const struct sockaddr *to, int tolen);
  该函数比send()函数多了两个参数,to表示目地机的IP地址和端口号信息,而tolen常常被赋值为sizeof (struct sockaddr)。Sendto 函数也返回实际发送的数据字节长度或在出现发送错误时返回-1。
  Recvfrom()函数原型为:
  int recvfrom(int sockfd,void *buf,int len,unsigned int flags,struct sockaddr *from,int *fromlen);
  from是一个struct sockaddr类型的变量,该变量保存源机的IP地址及端口号。fromlen常置为sizeof (struct sockaddr)。当recvfrom()返回时,fromlen包含实际存入from中的数据字节数。Recvfrom()函数返回接收到的字节数或当出现错误时返回-1,并置相应的errno。
如果你对数据报socket调用了connect()函数时,你也可以利用send()和recv()进行数据传输,但该socket仍然是数据报socket,并且利用传输层的UDP服务。但在发送或接收数据报时,内核会自动为之加上目地和源地址信息。

 

也可用size_t write(int fd,const void *buf,size_t nbytes) 和size_t read(int fd,void *buf,size_t nbyte)
read 返回零表示读到了EOF(文件结束符,如果读的是文件,那就是一个文件的末尾,如果读的是socket,那表示对方已经断开连接)


结束传输
  当所有的数据操作结束以后,你可以调用close()函数来释放该socket,从而停止在该socket上的任何数据操作:
close(sockfd);
  你也可以调用shutdown()函数来关闭该socket。该函数允许你只停止在某个方向上的数据传输,而一个方向上的数据传输继续进行。如你可以关闭某socket的写操作而允许继续在该socket上接受数据,直至读入所有数据。
  int shutdown(int sockfd,int how);
  Sockfd是需要关闭的socket的描述符。参数 how允许为shutdown操作选择以下几种方式:
  ·0-------不允许继续接收数据
  ·1-------不允许继续发送数据
·2-------不允许继续发送和接收数据,
·均为允许则调用close ()
  shutdown在操作成功时返回0,在出现错误时返回-1并置相应errno。

面向连接的Socket实例
  代码实例中的服务器通过socket连接向客户端发送字符串"Hello, you are connected!"。只要在服务器上运行该服务器软件,在客户端运行客户软件,客户端就会收到该字符串。
  该服务器软件代码如下:
#include

#include

#include

#include

#include

#include

#include

#include

#define SERVPORT 3333 /*服务器监听端口号 */

#define BACKLOG 10 /* 最大同时连接请求数 */

 

main()

{

    int sockfd,client_fd; /*sock_fd:监听socket;client_fd:数据传输socket */

    struct sockaddr_in my_addr; /* 本机地址信息 */

    struct sockaddr_in remote_addr; /* 客户端地址信息 */

    int sin_size;

    if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1)

    {

        perror("socket创建出错!");

        exit(1);

    }

   

    my_addr.sin_family=AF_INET;

    my_addr.sin_port=htons(SERVPORT);

    my_addr.sin_addr.s_addr = INADDR_ANY;

    bzero(&(my_addr.sin_zero),8);

   

    if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr))  == -1)

    {

        perror("bind出错!");

        exit(1);

    }

   

    if (listen(sockfd, BACKLOG) == -1)

    {

        perror("listen出错!");

        exit(1);

    }

   

    sin_size = sizeof(struct sockaddr_in);

/*

当服务器运行到accept语句时,而没有客户连接服务请求到来,

服务器就会停止在 accept语句上等待连接服务请求的到来,这种情况称为阻塞(blocking)。

而非阻塞操作则可以立即完成。比如,如果你希望服务器仅仅注意检查是否有客户在等待连接,有就接受连接,

否则就继续做其他事情,则可以通过将Socket设置为非阻塞方式来实现。非阻塞socket在没有客户在等待时就使 accept调用立即返回。

#include

#include

sockfd = socket(AF_INET,SOCK_STREAM,0);

fcntl(sockfd,F_SETFL,O_NONBLOCK);

*/

    while(1) // 轮询方式,不断调用accept函数

    {

        //sin_size是accept 的传出参数,它的值是写入remote_addr的数据量大小

        //sin_size <= sizeof(struct sockaddr_in)

        if ((client_fd = accept(sockfd, (struct sockaddr *)&remote_addr, &sin_size)) == -1)

        {

            perror("accept出错");

            continue;

        }

        printf("received a connection from %s/n", inet_ntoa(remote_addr.sin_addr));

 

        //////////////<---用子进程,并发度高

        if (!fork())

        { /* 子进程代码段 */

            if (send(client_fd, "Hello, you are connected!/n", 26, 0) == -1)

                perror("send出错!");

            close(client_fd);

            exit(0);

        }

        //////////////---->

 

        /*//////////////<---不用子进程。send 函数很耗时,故并发度低

        if (send(client_fd, "Hello, you are connected!/n", 26, 0) == -1)

                perror("send出错!");

        close(client_fd);

        //////////////---->*/

       

        close(client_fd);

    }

}   服务器的工作流程是这样的:首先调用socket函数创建一个Socket,然后调用bind函数将其与本机地址以及一个本地端口号绑定,然后调用 listen在相应的socket上监听,当accpet接收到一个连接服务请求时,将生成一个新的socket。服务器显示该客户机的IP地址,并通过 新的socket向客户端发送字符串"Hello,you are connected!"。最后关闭该socket。
  代码实例中的fork()函数生成一个子进程来处理数据传输部分,fork()语句对于子进程返回的值为0。所以包含fork函数的if语句是子进程代码部分,它与if语句后面的父进程代码部分是并发执行的。

客户端程序代码如下:
#include
#include
#include
#include
#include
#include
#include
#include
#define SERVPORT 3333
#define MAXDATASIZE 100 /*每次最大数据传输量 */
main(int argc, char *argv[]){
 int sockfd, recvbytes;
 char buf[MAXDATASIZE];
 struct hostent *host;
 struct sockaddr_in serv_addr;
 if (argc < 2) {
fprintf(stderr,"Please enter the server's hostname!/n");
exit(1);
}
 if((host=gethostbyname(argv[1]))==NULL) {
herror("gethostbyname出错!");
exit(1);
}
 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1){
perror("socket创建出错!");
exit(1);
}
 serv_addr.sin_family=AF_INET;
 serv_addr.sin_port=htons(SERVPORT);
 serv_addr.sin_addr = *((struct in_addr *)host->h_addr);
 bzero(&(serv_addr.sin_zero),8);
 if (connect(sockfd, (struct sockaddr *)&serv_addr, /
   sizeof(struct sockaddr)) == -1) {
perror("connect出错!");
exit(1);
}
 if ((recvbytes=recv(sockfd, buf, MAXDATASIZE, 0)) ==-1) {
perror("recv出错!");
exit(1);
}
 buf[recvbytes] = '/0';
 printf("Received: %s",buf);
 close(sockfd);
}
  客户端程序首先通过服务器域名获得服务器的IP地址,然后创建一个socket,调用connect函数与服务器建立连接,连接成功之后接收从服务器发送过来的数据,最后关闭socket。
  函数gethostbyname()是完成域名转换的。由于IP地址难以记忆和读写,所以为了方便,人们常常用域名来表示主机,这就需要进行域名和IP地址的转换。函数原型为:
  struct hostent *gethostbyname(const char *name);
  函数返回为hosten的结构类型,它的定义如下:
  struct hostent {
  char *h_name; /* 主机的官方域名 */
   char **h_aliases; /* 一个以NULL结尾的主机别名数组 */
   int h_addrtype; /* 返回的地址类型,在Internet环境下为AF-INET */
  int h_length; /* 地址的字节长度 */
   char **h_addr_list; /* 一个以0结尾的数组,包含该主机的所有地址*/
  };
  #define h_addr h_addr_list[0] /*在h-addr-list中的第一个地址*/
  当 gethostname()调用成功时,返回指向struct hosten的指针,当调用失败时返回-1。当调用gethostbyname时,你不能使用perror()函数来输出错误信息,而应该使用herror()函数来输出。

  无连接的客户/服务器程序的在原理上和连接的客户/服务器是一样的,两者的区别在于无连接的客户/服务器中的客户一般不需要建立连接,而且在发送接收数据时,需要指定远端机的地址。

阻塞和非阻塞
   阻塞函数在完成其指定的任务以前不允许程序调用另一个函数。例如,程序执行一个读数据的函数调用时,在此函数完成读操作以前将不会执行下一程序语句。当 服务器运行到accept语句时,而没有客户连接服务请求到来,服务器就会停止在accept语句上等待连接服务请求的到来。这种情况称为阻塞 (blocking)。而非阻塞操作则可以立即完成。比如,如果你希望服务器仅仅注意检查是否有客户在等待连接,有就接受连接,否则就继续做其他事情,则 可以通过将Socket设置为非阻塞方式来实现。非阻塞socket在没有客户在等待时就使accept调用立即返回。
  #include
  #include
  ……
sockfd = socket(AF_INET,SOCK_STREAM,0);
fcntl(sockfd,F_SETFL,O_NONBLOCK);
……
   通过设置socket为非阻塞方式,可以实现"轮询"若干Socket。当企图从一个没有数据等待处理的非阻塞Socket读入数据时,函数将立即返 回,返回值为-1,并置errno值为EWOULDBLOCK。但是这种"轮询"会使CPU处于忙等待方式,从而降低性能,浪费系统资源。而调用 select()会有效地解决这个问题,它允许你把进程本身挂起来,而同时使系统内核监听所要求的一组文件描述符的任何活动,只要确认在任何被监控的文件 描述符上出现活动,select()调用将返回指示该文件描述符已准备好的信息,从而实现了为进程选出随机的变化,而不必由进程本身对输入进行测试而浪费 CPU开销。Select函数原型为:
int select(int numfds,fd_set *readfds,fd_set *writefds,
fd_set *exceptfds,struct timeval *timeout);
   其中readfds、writefds、exceptfds分别是被select()监视的读、写和异常处理的文件描述符集合。如果你希望确定是否可以 从标准输入和某个socket描述符读取数据,你只需要将标准输入的文件描述符0和相应的sockdtfd加入到readfds集合中;numfds的值 是需要检查的号码最高的文件描述符加1,这个例子中numfds的值应为sockfd+1;当select返回时,readfds将被修改,指示某个文件 描述符已经准备被读取,你可以通过FD_ISSSET()来测试。为了实现fd_set中对应的文件描述符的设置、复位和测试,它提供了一组宏:
  FD_ZERO(fd_set *set)----清除一个文件描述符集;
  FD_SET(int fd,fd_set *set)----将一个文件描述符加入文件描述符集中;
  FD_CLR(int fd,fd_set *set)----将一个文件描述符从文件描述符集中清除;
  FD_ISSET(int fd,fd_set *set)----试判断是否文件描述符被置位。
  Timeout参数是一个指向struct timeval类型的指针,它可以使select()在等待timeout长时间后没有文件描述符准备好即返回。struct timeval数据结构为:
  struct timeval {
   int tv_sec; /* seconds */
   int tv_usec; /* microseconds */
};

POP3客户端实例
  下面的代码实例基于POP3的客户协议,与邮件服务器连接并取回指定用户帐号的邮件。与邮件服务器交互的命令存储在字符串数组POPMessage中,程序通过一个do-while循环依次发送这些命令。
#include
#include
#include
#include
#include
#include
#include
#include
#define POP3SERVPORT 110
#define MAXDATASIZE 4096

main(int argc, char *argv[]){
int sockfd;
struct hostent *host;
struct sockaddr_in serv_addr;
char *POPMessage[]={
"USER userid/r/n",
"PASS password/r/n",
"STAT/r/n",
"LIST/r/n",
"RETR 1/r/n",
"DELE 1/r/n",
"QUIT/r/n",
NULL
};
int iLength;
int iMsg=0;
int iEnd=0;
char buf[MAXDATASIZE];

if((host=gethostbyname("your.server"))==NULL) {
perror("gethostbyname error");
exit(1);
}
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1){
perror("socket error");
exit(1);
}
serv_addr.sin_family=AF_INET;
serv_addr.sin_port=htons(POP3SERVPORT);
serv_addr.sin_addr = *((struct in_addr *)host->h_addr);
bzero(&(serv_addr.sin_zero),8);
if (connect(sockfd, (struct sockaddr *)&serv_addr,sizeof(struct sockaddr))==-1){
perror("connect error");
exit(1);
}

do {
send(sockfd,POPMessage[iMsg],strlen(POPMessage[iMsg]),0);
printf("have sent: %s",POPMessage[iMsg]);

iLength=recv(sockfd,buf+iEnd,sizeof(buf)-iEnd,0);
iEnd+=iLength;
buf[iEnd]='/0';
printf("received: %s,%d/n",buf,iMsg);

iMsg++;
} while (POPMessage[iMsg]);

close(sockfd);
}

 

服务器模型

学习过《软件工程》吧.软件工程可是每一个程序员"必修"的课程啊.如果你没有学习过, 建议你去看一看. 在这一章里面,我们一起来从软件工程的角度学习网络编程的思想.在我们写程序之前, 我们都应该从软件工程的角度规划好我们的软件,这样我们开发软件的效率才会高. 在网络程序里面,一般的来说都是许多客户机对应一个服务器.为了处理客户机的请求, 对服务端的程序就提出了特殊的要求.我们学习一下目前最常用的服务器模型. 

循环服务器:循环服务器在同一个时刻只可以响应一个客户端的请求 

并发服务器:并发服务器在同一个时刻可以响应多个客户端的请求 


9.1 循环服务器:UDP服务器 
UDP循环服务器的实现非常简单:UDP服务器每次从套接字上读取一个客户端的请求,处理, 然后将结果返回给客户机. 

可以用下面的算法来实现. 

   socket(...);
   bind(...);
   while(1)
    {
         recvfrom(...);
         process(...);
         sendto(...);
   }

因为UDP是非面向连接的,没有一个客户端可以老是占住服务端. 只要处理过程不是死循环, 服务器对于每一个客户机的请求总是能够满足. 
9.2 循环服务器:TCP服务器 
TCP循环服务器的实现也不难:TCP服务器接受一个客户端的连接,然后处理,完成了这个客户的所有请求后,断开连接. 

算法如下: 

        socket(...);
        bind(...);
        listen(...);
        while(1)
        {
                accept(...);
                while(1)
                {
                        read(...);
                        process(...);
                        write(...);
                }
                close(...);
        }

TCP循环服务器一次只能处理一个客户端的请求.只有在这个客户的所有请求都满足后, 服务器才可以继续后面的请求.这样如果有一个客户端占住服务器不放时,其它的客户机都不能工作了.因此,TCP服务器一般很少用循环服务器模型的. 

9.3 并发服务器:TCP服务器 
为了弥补循环TCP服务器的缺陷,人们又想出了并发服务器的模型. 并发服务器的思想是每一个客户机的请求并不由服务器直接处理,而是服务器创建一个 子进程来处理. 

算法如下: 

  socket(...);
  bind(...);
  listen(...);
  while(1)
  {
        accept(...);
        if(fork(..)==0)
          {
              while(1)
               {        
                read(...);
                process(...);
                write(...);
               }
           close(...);
           exit(...);
          }
        close(...);
  }     

TCP并发服务器可以解决TCP循环服务器客户机独占服务器的情况. 不过也同时带来了一个不小的问题.为了响应客户机的请求,服务器要创建子进程来处理. 而创建子进程是一种非常消耗资源的操作. 

9.4 并发服务器:多路复用I/O 
为了解决创建子进程带来的系统资源消耗,人们又想出了多路复用I/O模型. 

首先介绍一个函数select 

 int select(int nfds,fd_set *readfds,fd_set *writefds,
                fd_set *except fds,struct timeval *timeout)
 void FD_SET(int fd,fd_set *fdset)
 void FD_CLR(int fd,fd_set *fdset)
 void FD_ZERO(fd_set *fdset)
 int FD_ISSET(int fd,fd_set *fdset)

一般的来说当我们在向文件读写时,进程有可能在读写出阻塞,直到一定的条件满足. 比如我们从一个套接字读数据时,可能缓冲区里面没有数据可读 (通信的对方还没有 发送数据过来),这个时候我们的读调用就会等待(阻塞)直到有数据可读.如果我们不 希望阻塞,我们的一个选择是用select系统调用. 只要我们设置好select的各个参数,那么当文件可以读写的时候select回"通知"我们 说可以读写了. readfds所有要读的文件文件描述符的集合 
writefds所有要的写文件文件描述符的集合 

exceptfds其他的服要向我们通知的文件描述符 

timeout超时设置. 

nfds所有我们监控的文件描述符中最大的那一个加1 

在我们调用select时进程会一直阻塞直到以下的一种情况发生. 1)有文件可以读.2)有文件可以写.3)超时所设置的时间到. 

为了设置文件描述符我们要使用几个宏. FD_SET将fd加入到fdset 

FD_CLR将fd从fdset里面清除 

FD_ZERO从fdset中清除所有的文件描述符 

FD_ISSET判断fd是否在fdset集合中 

使用select的一个例子 

int use_select(int *readfd,int n)
{
   fd_set my_readfd;
   int maxfd;
   int i;
   
   maxfd=readfd[0];
   for(i=1;i
    if(readfd[i]>maxfd) maxfd=readfd[i];
   while(1)
   {
        /*   将所有的文件描述符加入   */
        FD_ZERO(&my_readfd);
        for(i=0;i
            FD_SET(readfd[i],*my_readfd);
        /*     进程阻塞                 */
        select(maxfd+1,& my_readfd,NULL,NULL,NULL); 
        /*        有东西可以读了       */
        for(i=0;i
          if(FD_ISSET(readfd[i],&my_readfd))
              {
                  /* 原来是我可以读了  */ 
                        we_read(readfd[i]);
              }
   }
}

使用select后我们的服务器程序就变成了. 


        初始化(socket,bind,listen);
        
    while(1)
        {
        设置监听读写文件描述符(FD_*);   
        
        调用select;
        
        如果是倾听套接字就绪,说明一个新的连接请求建立
             { 
                建立连接(accept);
                加入到监听文件描述符中去;
             }
       否则说明是一个已经连接过的描述符
                {
                    进行操作(read或者write);
                 }
                        
        }               

多路复用I/O可以解决资源限制的问题.着模型实际上是将UDP循环模型用在了TCP上面. 这也就带来了一些问题.如由于服务器依次处理客户的请求,所以可能会导致有的客户 会等待很久. 

9.5 并发服务器:UDP服务器 
人们把并发的概念用于UDP就得到了并发UDP服务器模型. 并发UDP服务器模型其实是简单的.和并发的TCP服务器模型一样是创建一个子进程来处理的 算法和并发的TCP模型一样. 

除非服务器在处理客户端的请求所用的时间比较长以外,人们实际上很少用这种模型. 


9.6 一个并发TCP服务器实例 

#include 
#include 
#include 
#include 
#include 
#define MY_PORT         8888

int main(int argc ,char **argv)
{
 int listen_fd,accept_fd;
 struct sockaddr_in     client_addr;
 int n;
 
 if((listen_fd=socket(AF_INET,SOCK_STREAM,0))<0)
  {
        printf("Socket Error:%s/n/a",strerror(errno));
        exit(1);
  }
 
 bzero(&client_addr,sizeof(struct sockaddr_in));
 client_addr.sin_family=AF_INET;
 client_addr.sin_port=htons(MY_PORT);
 client_addr.sin_addr.s_addr=htonl(INADDR_ANY);
 n=1;
 /* 如果服务器终止后,服务器可以第二次快速启动而不用等待一段时间  */
 setsockopt(listen_fd,SOL_SOCKET,SO_REUSEADDR,&n,sizeof(int));
 if(bind(listen_fd,(struct sockaddr *)&client_addr,sizeof(client_addr))<0)
  {
        printf("Bind Error:%s/n/a",strerror(errno));
        exit(1);
  }
  listen(listen_fd,5);
  while(1)
  {
   accept_fd=accept(listen_fd,NULL,NULL);
   if((accept_fd<0)&&(errno==EINTR))
          continue;
   else if(accept_fd<0)
    {
        printf("Accept Error:%s/n/a",strerror(errno));
        continue;
    }
  if((n=fork())==0)
   {
        /* 子进程处理客户端的连接 */
        char buffer[1024];

        close(listen_fd);
        n=read(accept_fd,buffer,1024);
        write(accept_fd,buffer,n);
        close(accept_fd);
        exit(0);
   }
   else if(n<0)
        printf("Fork Error:%s/n/a",strerror(errno));
   close(accept_fd);
  }
}

 

 

阅读(2317) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~