分类: LINUX
2013-03-31 17:14:33
ET模型的逻辑:内核的读buffer有内核态主动变化时,内核会通知你,
无需再去mod。写事件是给用户使用的,最开始add之后,内核都不会通知你了,你可以强制写数据(直到EAGAIN或者实际字节数小于
需要写的字节数),当然你可以主动mod OUT,此时如果句柄可以写了(send buffer有空间),内核就通知你。
这里内核态主动的意思是:内核从网络接收了数据放入了读buffer(会通知用户IN事件,即用户可以recv数据)
并且这种通知只会通知一次,如果这次处理(recv)没有到刚才说的两种情况(EAGIN或者实际字节数小于
需要读写的字节数),则该事件会被丢弃,直到下次buffer发生变化。
与LT的差别就在这里体现,LT
在这种情况下,事件不会丢弃,而是只要读buffer里面有数据可以让用户读,则不断的通知你。
另外对于ET而言,当然也不一定非send/recv到前面所述的结束条件才结束,用户可以自己随时控制,即用户可以在自己认为合适的时候去设置
IN和OUT事件:
1 如果用户主动epoll_mod OUT事件,此时只要该句柄可以发送数据(发送buffer不满),则epoll
_wait就会响应(有时候采用该机制通知epoll_wai醒过来)。
2 如果用户主动epoll_mod IN事件,只要该句柄还有数据可以读,则epoll_wait会响应。
这种逻辑在普通的服务里面都不需要,可能在某些特殊的情况需要。 但是请注意,如果每次调用的时候都去epoll mod将显著降低效率,已经吃过几次亏了!
因此采用et写服务框架的时候,最简单的处理就是:
建立连接的时候epoll_add IN和OUT事件, 后面就不需要管了
每次read/write的时候,到两种情况下结束:
1 发生EAGAIN
2 read/write的实际字节数小于 需要读写的字节数
对于第二点需要注意两点:
A:如果是UDP服务,处理就不完全是这样,必须要recv到发生EAGAIN为止,否则就丢失事件了
因为UDP和TCP不同,是有边界的,每次接收一定是一个完整的UDP包,当然recv的buffer需要至少大于一个UDP包的大小
随便再说一下,一个UDP包到底应该多大?
对于internet,由于MTU的限制,UDP包的大小不要超过576个字节,否则容易被分包,对于公司的IDC环境,建议不要超过1472,否则也比
较容易分包。
B
如果发送方发送完数据以后,就close连接,这个时候如果recv到数据是实际字节数小于读写字节数,根据开始所述就认为到EAGIN了从而直接返回,
等待下一次事件,这样是有问题的,close事件丢失了!
因此如果依赖这种关闭逻辑的服务,必须接收数据到EAGIN为止,例如lb。
四、
epoll的使用方法
首先通过create_epoll(int
maxfds)来创建一个epoll的句柄,其中maxfds为你epoll所支持的最大句柄数。这个函数会返回一个新的epoll句柄,之后的所有操作
将通过这个句柄来进行操作。在用完之后,记得用close()来关闭这个创建出来的epoll句柄。
之后在你的网络主循环里面,每一帧的调用epoll_wait(int epfd, epoll_event events, int max
events, int timeout)来查询所有的网络接口,看哪一个可以读,哪一个可以写了。基本的语法为:
nfds = epoll_wait(kdpfd, events, maxevents, -1);
其中kdpfd为用epoll_create创建之后的句柄,events是一个epoll_event*的指针,当epoll_wait这个函数操作成
功之后,epoll_events里面将储存所有的读写事件。max_events是当前需要监听的所有socket句柄数。最后一个timeout是
epoll_wait的超时,为0的时候表示马上返回,为-1的时候表示一直等下去,直到有事件范围,为任意正整数的时候表示等这么长的时间,如果一直没
有事件,则范围。一般如果网络主循环是单独的线程的话,可以用-1来等,这样可以保证一些效率,如果是和主逻辑在同一个线程的话,则可以用0来保证主循环
的效率。
epoll_wait范围之后应该是一个循环,遍利所有的事件:
for(n = 0; n < nfds; ++n) {
if(events[n].data.fd == listener) {
//如果是主socket的事件的话,则表示有新连接进入了,进行新连接的处理。
client = accept(listener, (struct sockaddr *)
&local,
&addrlen);
if(client < 0){
perror("accept");
continue;
}
setnonblocking(client); // 将新连接置于非阻塞模式
ev.events = EPOLLIN | EPOLLET; //
并且将新连接也加入EPOLL的监听队列。
注意,这里的参数EPOLLIN |
EPOLLET并没有设置对写socket的监听,如果有写操作的话,这个时候epoll是不会返回事件的,如果要对写操作也监听的话,应该是
EPOLLIN | EPOLLOUT | EPOLLET
ev.data.fd = client;
if (epoll_ctl(kdpfd, EPOLL_CTL_ADD, client,
&ev) < 0) {
//
设置好event之后,将这个新的event通过epoll_ctl加入到epoll的监听队列里面,这里用EPOLL_CTL_ADD来加一个新的
epoll事件,通过EPOLL_CTL_DEL来减少一个epoll事件,通过EPOLL_CTL_MOD来改变一个事件的监听方式。
fprintf(stderr, "epoll set insertion error:
fd=%d0,
client);
return -1;
}
}
else //
如果不是主socket的事件的话,则代表是一个用户socket的事件,则来处理这个用户socket的事情,比如说read(fd,xxx)之类的,
或者一些其他的处理。
do_use_fd(events[n].data.fd);
}
对,epoll的操作就这么简单,总共不过4个API:epoll_create, epoll_ctl, epoll_wait和close。
如果您对epoll的效率还不太了解,请参考我之前关于网络游戏的网络编程等相关的文章。
以前公司的服务器都是使用HTTP连接,但是这样的话,在手机目前的网络情况下不但显得速度较慢,而且不稳定。因此大家一致同意用SOCKET来进行连
接。虽然使用SOCKET之后,对于用户的费用可能会增加(由于是用了CMNET而非CMWAP),但是,秉着用户体验至上的原则,相信大家还是能够接受
的(希望那些玩家月末收到帐单不后能够保持克制...)。
这次的服务器设计中,最重要的一个突破,是使用了EPOLL模型,虽然对之也是一知半解,但是既然在各大PC网游中已经经过了如此严酷的考验,相信他不会
让我们失望,使用后的结果,确实也是表现相当不错。在这里,我还是主要大致介绍一下这个模型的结构。
注意:
对于listen socket fd该如何处理,有的时候会使用两个线程,一个用来监听accept另一个用来监听epoll_wait,如果是这样使用的话,则listen socket fd使用默认的阻塞方式就行了,而如果epoll_wait和accept处于一个线程中,即,全部由epoll_wait进行监听,则,需将 listen socket fd也设置成非阻塞的,这样,对accept也应该使用while包起来(类似于上面的recv),因为,epoll_wait返回时只是说有连接到来 了,并没有说有几个连接,而且在ET模式下epoll_wait不会再因为上一次的连接还没读完而返回,这种情况确实存在,我因为这个问题而耗费了一天多 的时间,这里需要说明的是,每调用一次accept将从内核中的已连接队列中的队头读取一个连接,因为在并发访问的环境下,有可能有多个连接“同时”到 达,而epoll_wait只返回了一次。
五、Linux下EPOll编程实例
EPOLL模型似乎只有一种格式,所以大家只要参考我下面的代码,就能够对EPOLL有所了解了,代码的解释都已经在注释中:
|