最近一直在做主成分分析的算法实现,其中有一环就是由样本数据来求相关系数矩阵(然后对此实对称矩阵用雅可比方法求出特征值和特征向量),当然我知道我设计的算法肯定不是最有效率的,但我还是想和大家分享一下。
我所处理的数据类似于下面这种格式:
//head file:CMatrix.h
#define COL 1000 //指定最大行数
#define ROW 2000 //指定最大列数
class CMatrix
{
public:
double GetElement(int row, int col); //获取data[row][col]的值
void ChangeElement(int row, int col, double value); //改变data[row][col]的值为value
double Cal_Standard_Deviation(int r, int c); //返回c列变量的标准差
double Cal_Average(int r, int c); //返回c列变量的均值
double* Cal_Mutuality_Matrix(int r, int c); //返回相关系数矩阵的所有元素值
double Cal_Exy(int r, int c1, int c2); //计算E(Xi*Xj),c1、c2代表两列
private:
double data[ROW][COL]; //存储矩阵内容
};
//source file:CMatrix.cpp
#include "CMatrix.h"
#include
double CMatrix::GetElement(int row, int col)
{
return this->data[row][col];
}
void CMatrix::ChangeElement(int row, int col, double value)
{
this->data[row][col] = value;
}
double CMatrix::Cal_Standard_Deviation(int r, int c)
{
double result = 0.0;
double Ex = 0.0;
double Exx = 0.0;
Ex = this->Cal_Average(r, c);
for (int i = 0; i < r; i++)
{
Exx += data[i][c - 1] * data[i][c - 1];
}
Exx /= r;
result = sqrt(Exx - Ex * Ex);
return result;
}
double CMatrix::Cal_Average(int r,int c)
{
double ave = 0.0; //存储均值
for(int i = 0; i < r; i ++ )
{
ave += data[i][c-1];
}
ave /= r;
return ave;
}
double* CMatrix::Cal_Mutuality_Matrix(int r, int c)
{
double *Cov = new double[c*c];
for (int i = 0; i < c; i ++)
{
for (int j = 0; j < c; j ++)
{
Cov[i * c + j] = ( this->Cal_Exy(r, i + 1, j + 1) - this->Cal_Average(r, i + 1) * this->Cal_Average(r , j + 1) )
/ ( this->Cal_Standard_Deviation(r, i + 1) * this->Cal_Standard_Deviation(r, j + 1) ) ;
}
}
return Cov;
}
double CMatrix::Cal_Exy(int r, int c1, int c2)
{
double result = 0.0; //存储运算结果
double *xy = new double[r];
for(int i = 0; i < r; i ++)
{
xy[i] = data[i][c1 - 1] * data[i][c2 - 1];
}
for (i = 0; i < r; i++)
{
result += xy[i];
}
result /= r;
return result;
}
阅读(5225) | 评论(0) | 转发(0) |