分类: 架构设计与优化
2017-04-27 21:08:49
Lambda 表达式可以理解为简洁地表示可传递的匿名函数的一种方式:它没有名称,但它有参数列表、函数主体、返回类型,可能还有一个可以抛出的异常列表。
匿名:它不像普通方法那样有一个明确的名称;
函数:Lambda 表达式是函数是因为它不像方法那样属于某个特定的类,但和方法一样,Lambda 有参数列表、函数主体、返回类型,还可能有可以抛出的异常列表;
传递:Lambda 表达式可以作为参数传递给方法或存储在变量中;
简洁:无需像匿名类那样写很多模板代码;
Lambda 表达式由参数列表、箭头和 Lambda 主体组成。
(Apple o1, Apple o2) -> Integer.valueOf(o1.getWeight()).compareTo(Integer.valueOf(o2.getWeight()))
参数列表:这里采用了 Comparator 中 compareTo 方法的参数;
箭头:箭头把参数列表和 Lambda 主体分开;
Lambda 主体:表达式就是 Lambda 的返回值;
Java8中有效的 Lambda 表达式如下:
Lambda 表达式 | 含义 |
---|---|
(String s) -> s.length() | 表达式具有一个 String 类型的参数并返回一个 int。 Lambda 没有 return 语句,因为已经隐含的 return,可以显示调用 return。 |
(Apple a) -> a.getWeight() > 150 | 表达式有一个 Apple 类型的参数并返回一个 boolean 值 |
(int x, int y) -> { System.out.printn("Result"); System.out.printn(x + y)} |
表达式具有两个 int 类型的参数而没有返回值(void返回),Lambda 表达式可以包含多行语句,但必须要使用大括号包起来。 |
() -> 42 | 表达式没有参数,返回一个 int 类型的值。 |
(Apple o1, Apple o2) -> Integer.valueOf(o1.getWeight()) .compareTo (Integer.valueOf(o2.getWeight())) |
表达式具有两个 Apple 类型的参数,返回一个 int 比较重要。 |
下面提供一些 Lambda 表达式的使用案例:
使用案例 | Lambda 示例 |
---|---|
布尔表达式 |
(List |
创建对象 | () -> new Apple(10) |
消费对象 | (Apple a) -> { System.out.println(a.getWeight) } |
从一个对象中选择/抽取 | (String s) -> s.lenght() |
组合两个值 | (int a, int b) -> a * b |
比较两个对象 |
`(Apple o1, Apple o2) -> Integer.valueOf(o1.getWeight()) .compareTo(Integer.valueOf(o2.getWeight())) |
到底在哪里可以使用 Lambda 呢?你可以在函数式接口上使用 Lambda 表达式。
函数式接口就是只定义一个抽象方法的接口,比如 Java API 中的 Predicate、Comparator 和 Runnable 等。
public interface Predicate<T> { boolean test(T t);
} public interface Comparator<T> { int compare(T o1, T o2);
} public interface Runnable { void run();
}
用函数式接口可以干什么呢?Lambda 表达式允许你直接以内联的形式为函数式接口的抽象方法提供实现,并把整个表达式作为函数式接口的实例(具体说来,是函数式接口一个具体实现 的实例)。你用匿名内部类也可以完成同样的事情,只不过比较笨拙:需要提供一个实现,然后 再直接内联将它实例化。下面的代码是有效的,因为Runnable是一个只定义了一个抽象方法run 的函数式接口:
//使用Lambda Runnable r1 = () -> System.out.println("Hello World 1"); //匿名类 Runnable r2 = new Runnable(){ public void run(){
System.out.println("Hello World 2");
}
}; public static void process(Runnable r){
r.run();
}
process(r1); //打印 "Hello World 1" process(r2); //打印 "Hello World 2" //利用直接传递的 Lambda 打印 "Hello World 3" process(() -> System.out.println("Hello World 3"));
函数式接口的抽象方法的签名基本上就是 Lambda 表达式的签名。我们将这种抽象方法叫作函数描述符。例如,Runnable 接口可以看作一个什么也不接受什么也不返回(void)的函数的签名,因为它只有一个叫作 run 的抽象方法,这个方法什么也不接受,什么也不返回(void)。
让我们通过一个例子,看看在实践中如何利用Lambda和行为参数化来让代码更为灵活,更为简洁。
资源处理(例如处理文件或数据库)时一个常见的模式就是打开一个资源,做一些处理,然后关闭资源。这个设置和清理阶段总是很类似,并且会围绕着执行处理的那些重要代码。这就是所谓的环绕执行(execute around)模式。
例如,在以下代码中,高亮显示的BufferedReader reader = new BufferedReader(new FileReader("data.txt"))就是从一个文件中读取一行所需的模板代码(注意你使用了Java 7中的带资源的try语句,它已经简化了代码,因为你不需要显式地关闭资源了)。
public static String processFile() throws IOException { try (BufferedReader reader = new BufferedReader(new FileReader("data.txt"))) { return reader.readLine();
}
}
现在上述代码是有局限的。你只能读文件的第一行。如果你想要返回头两行,甚至是返回使用最频繁的词, 该怎么办呢?在理想的情况下, 你要重用执行设置和清理的代码, 并告诉 processFile 方法对文件执行不同的操作。是的,你需要把 processFile 的行为参数化,你需要一种方法把行为传递给 processFile , 以便它可以利用 BufferedReader执行不同的行为。
传递行为正是 Lambda 的优势。那要是想一次读两行,这个新的processFile方法看起来又该是什么样的呢? 你需要一个接收BufferedReader并返回String的Lambda。例如,下面就是从 BufferedReader 中打印两行的写法:
String result = processFile((BufferedReader r) -> r.readLine() +r.readLine());
Lambda 仅可用于上下文是函数式接口的情况。你需要创建一个能匹配 BufferedReader -> String,还可以抛出 IOException 异常的接口。让我们把这一接口称为 BufferedReaderProcessor。
@FunctionalInterface public interface BufferedReaderProcessor { String process(BufferedReader reader) throws IOException;
}
任何BufferedReader -> String形式的 Lambda 都可以作为参数来传递,因为它们符合 BufferedReaderProcessor 接口中定义的 process 方法的签名。现在只需要编写一种方法在 processFile主体内执行 Lambda 所代表的代码。
public static String processFile(BufferedReaderProcessor processor) throws IOException { try (BufferedReader reader = new BufferedReader(new FileReader("data.txt"))) { return processor.process(reader); //处理 BufferedReader 对象 }
}
现在就可以通过传递不同的 Lambda 重用 processFile 方法,并以不同的方式处理文件了。
//打印一行 String result = processFile((BufferedReader r) -> r.readLine());
System.out.println(result); //打印2行 result = processFile((BufferedReader r) -> r.readLine() +r.readLine());
Java 8的库帮你在java.util.function包中引入了几个新的函数式接口。我们接下来介绍 Predicate、Consumer和Function 三种函数式接口。
java.util.function.Predicate
@FunctionalInterface public interface Predicate<T>{ boolean test(T t); } public static List filter(List list, Predicate p) {
List results = new ArrayList<>(); for(T s: list){ if(p.test(s)){
results.add(s);
}
} return results;
}
Predicate nonEmptyStringPredicate = (String s) -> !s.isEmpty();
List nonEmpty = filter(listOfStrings, nonEmptyStringPredicate);
java.util.function.Consumer
@FunctionalInterface public interface Consumer<T> { void accept(T t);
} public static void forEach(List list, Consumer c) { for(T i: list){
c.accept(i);
}
}
forEach(Arrays.asList(1,2,3,4,5), (Integer i) -> System.out.println(i) );
java.util.function.Function
泛型 T 的对象,并返回一个泛型 R 的对象。如果你需要定义一个Lambda,将输入对象的信息映射到输出,就可以使用这个接口(比如提取苹果的重量,或把字符串映射为它的长度)。在下面的代码中,我们向你展示如何利用它来创建一个map方法,以将一个String列表映射到包含每个 String长度的Integer列表。
@FunctionalInterface public interface Function<T, R>{ R apply(T t);
} public static List map(List list, Function f) {
List result = new ArrayList<>(); for(T s: list) {
result.add(f.apply(s));
} return result;
} // [7, 2, 6] List l = map( Arrays.asList("lambdas","in","action"), (String s) -> s.length() );
Java类型要么是引用类型(比如Byte、Integer、Object、List),要么是原始类型(比如int、double、byte、char)。但是泛型(比如Consumer
Java 8为我们前面所说的函数式接口带来了一个专门的版本,以便在输入和输出都是原始类型时避免自动装箱的操作。比如,使用 IntPredicate 就避免了对值 1000 进行装箱操作,但要是用 Predicate
下表中列出 Java 8 中常用的函数式接口:
函数式接口 | 函数描述符 | 原始类型特化 |
---|---|---|
Predicate |
T -> boolean | IntPredicate,LongPredicate, DoublePredicate |
Consumer |
T -> void | IntConsumer,LongConsumer, DoubleConsumer |
Function |
T -> R |
IntFunction |
Supplier |
() -> T | BooleanSupplier,IntSupplier, LongSupplier, DoubleSupplier |
UnaryOperator |
T -> T | IntUnaryOperator, LongUnaryOperator, DoubleUnaryOperator |
BinaryOperator |
(T,T) -> T | IntBinaryOperator, LongBinaryOperator, DoubleBinaryOperator |
BiPredicate |
(L,R) -> boolean | |
BiConsumer |
(T,U) -> R |
ObjIntConsumer |
BiFunction |
(T,U) -> R |
ToIntBiFunction |
Lambda 的类型是从使用 Lambda 的上下文推断出来的。上下文(比如接受它传递的方法的参数,或接受它的值的局部变量)中 Lambda 表达式需要的类型称为目标类型。下图表示了代码的类型检查过程:
类型检查过程可以分解为如下所示:
首先,找出 filter 方法的声明;
第二,找出目标类型 Predicate
第三,Predicate
第四,test 方法描述了一个函数描述符,它可以接受一个 Apple,并返回一个 boolean。
最后,filter 的任何实际参数都必须匹配这个要求。
用一个 Lambda 表达式就可以与不同的函数式接口联系起来,只要它们的抽象方法签名能够兼容。比如,前面提到的 Callable 和 PrivilegeAction,这两个接口都代表着什么也不接受且返回一个泛型 T 的函数。如下代码所示两个赋值时有效的:
Callable c = () -> 42;
PrivilegeAction p = () -> 42;
特殊的void兼容规则如果一个Lambda的主体是一个语句表达式, 它就和一个返回void的函数描述符兼容(当然需要参数列表也兼容)。例如,以下两行都是合法的,尽管 List 的 add 方法返回了一个 boolean,而不是 Consumer 上下文(T -> void)所要求的void:
//Predicate 返回一个 boolean Predicate p = s -> list.add(s); //Consumer 返回一个 void Consumer b = s -> list.add(s);
Java编译器会从上下文(目标类型)推断出用什么函数式接口来配合 Lambda 表达式,这意味着它也可以推断出适合Lambda 的签名,因为函数描述符可以通过目标类型来得到。这样做的好处在于,编译器可以了解Lambda表达式的参数类型,这样就可以在Lambda语法中省去标注参数类型。
List greenApples = filter(inventory, a -> "green".equals(a.getColor())); //参数a没有显示类型 Comparator c = (Apple a1, Apple a2) -> a1.getWeight().compareTo(a2.getWeight()); //无类型推断 Comparator c = (a1, a2) -> a1.getWeight().compareTo(a2.getWeight()); //类型推断
Lambda表达式也允许使用自由变量(不是参数,而是在外层作用域中定义的变量),就像匿名类一样。 它们被称作捕获Lambda。例如,下面的Lambda捕获了portNumber变量:
int num = 1337;
Runnable r = () -> System.out.println(num);
Lambda可以没有限制地捕获(也就是在其主体中引用)实例变量和静态变量。但局部变量必须显式声明为final, 或事实上是final。换句话说,Lambda表达式只能捕获指派给它们的局部变量一次。(注:捕获 实例变量可以被看作捕获最终局部变量this。) 例如,下面的代码无法编译,因为portNumber 变量被赋值两次:
int portNumber = 1337;
Runnable r = () -> System.out.println(portNumber);
portNumber = 31337; //错误:Lambda表达式引用的局 部变量必须是最终的(final) 或事实上最终的
为什么局部变量有这些限制?第一,实例变量和局部变量背后的实现有一 个关键不同。实例变量都存储在堆中,而局部变量则保存在栈上。如果Lambda可以直接访问局部变量,而且Lambda是在一个线程中使用的,则使用Lambda的线程,可能会在分配该变量的线程将这个变量收回之后,去访问该变量。因此,Java在访问自由局部变量时,实际上是在访问它的副本,而不是访问原始变量。如果局部变量仅仅赋值一次那就没有什么区别了——因此就有了这个限制。第二,这一限制不鼓励你使用改变外部变量的典型命令式编程模式(这种模式会阻碍很容易做到的并行处理)。
方法引用让你可以重复使用现有的方法定义,并像Lambda一样传递它们。在一些情况下,比起使用 Lambda 表达式,它们似乎更易读,感觉也更自然。下面就是我们借助更新的Java 8 API,用方法引用写的一个排序的例子:
lists.sort(comparing(Apple::getWeight);
方法引用可以被看作仅仅调用特定方法的Lambda的一种快捷写法。它的基本思想是,如果一个Lambda代表的只是“直接调用这个方法”,那最好还是用名称来调用它,而不是去描述如何调用它。事实上,方法引用就是让你根据已有的方法实现来创建 Lambda表达式。但是,显式地指明方法的名称,你的代码的可读性会更好。它是如何工作的呢? 当你需要使用方法引用时, 目标引用放在分隔符 :: 前, 方法的名称放在后面。 例如, Apple::getWeight就是引用了Apple类中定义的方法getWeight。请记住,不需要括号,因为 你没有实际调用这个方法。方法引用就是Lambda表达式(Apple a) -> a.getWeight()的快捷写法,下表给出了Java 8中方法引用的其他一些例子。
Lambda | 等效的引用方法 |
---|---|
(Apple a) -> a.getWeight() | Apple::getWeight |
() -> Thread.currentThread().dumpStack() | Thread.currentThread()::dumpStack |
(str,i) -> str.substring(i) | String::substring |
(String i) -> System.out.println(s) | System.out::println |
方法引用主要分为三类:
指向静态方法的引用(例如 Integer 的 parseInt 方法,写作 Integer::parseInt)
指向任意类型实例方法的方法引用(例如 String 的 length 方法,写作 String::length)
指向现有对象的实例方法的引用(假设有一个局部变量 expensiveTransaction 用于存放 Transaction 类型的对象,它支持实例方法 getValue,那么就可以写 expensiveTransaction::getValue)
注意,编译器会进行一种与Lambda表达式类似的类型检查过程,来确定对于给定的函数 式接口,这个方法引用是否有效:方法引用的签名必须和上下文类型匹配。
对于一个现有构造函数,可以利用它的名称和关键字 new 来创建它的一个引用: ClassName::new。它的功能与指向静态方法的引用类似。
例如,假设有一个构造函数没有参数。 它适合 Supplier 的签名() -> Apple。可以这样做:
Supplier c1 = Apple::new; //构造函数引用指向默认的 Apple() 构造函数 Apple a1 = c1.get(); //产生一个新的对象 //等价于: Supplier c1 = () -> new Apple(); //利用默认构造函数创建 Apple 的 Lambda 表达式 Apple a1 = c1.get();
如果你的构造函数的签名是Apple(Integer weight),那么它就适合 Function 接口的签名,于是可以这样写:
Function c2 = Apple::new; //构造函数引用指向 Apple(Integer weight) 构造函数 Apple a2 = c2.apple(100); //等价于: Function c2 = (Integer weight) -> new Apple(weight);
Apple a2 = c2.apple(100);
如果你有一个具有两个参数的构造函数Apple(String color, Integer weight),那么它就适合BiFunction接口的签名,于是可以这样写:
BiFunction c3 = Apple::new;
Apple a3 = c23.apple("green", 100); //等价于: BiFunction c3 = (String color, Integer weight) -> new Apple(color, weight);
Apple a3 = c3.apple("green", 100);
Java 8的API已经为你提供了一个 List 可用的 sort 方法,那么如何把排序策略传递给 sort 方法呢?sort方法的签名是这样的:
void sort(Comparator super E> c)
它需要一个 Comparator 对象来比较两个Apple!这就是在Java中传递策略的方式:它们必须包裹在一个对象里。我们说 sort 的行为被参数化了:传递给它的排序策略不同,其行为也会 不同。
第一个解决方案可以是这样的:
public class AppleComparator implements Comparator<Apple> { @Override public int compare(Apple o1, Apple o2) { return o1.getWeight().compareTo(o2.getWeight());
}
}
apples.sort(new AppleComparator())
可以使用匿名类来改进方案,而不是实现一个 Comparator 却只实例化一次:
apples.sort(new Comparator() { @Override public int compare(Apple o1, Apple o2) { return o1.getWeight().compareTo(o2.getWeight());
}
});
接下来使用 Lambda 表达式来改进方案:
apples.sort((Apple a1,Apple a2) -> a1.getWeight().compareTo(a2.getWeight()));
Comparator 具有一个叫作 comparing 的静态辅助方法,它可以接受一个 Function 来提取 Comparable 键值,并生成一个 Comparator 对象,它可以像下面这样用(注意你现在传递的Lambda只有一 个参数:Lambda说明了如何从苹果中提取需要比较的键值):
apples.sort(Comparator.comparing(((Apple apple) -> apple.getWeight())));
方法引用就是替代那些转发参数的 Lambda 表达式的语法糖。可以用方法引 用改进方案如下:
apples.sort(Comparator.comparing(Apple::getWeight));
逆序:Comparator 接口有一个默认方法 reversed 可以使给定的比较器逆序。
apples.sort(Comparator.comparing(Apple::getWeight).reversed()); //按重量递减排序
比较器链:Comparator 接口的 thenComparing 方法接受一个函数作为参数(就像 comparing方法一样),如果两个对象用第一个Comparator比较之后是相等的,就提供第二个 Comparator。
apples.sort(Comparator.comparing(Apple::getWeight).reversed().thenComparing(Apple::getColor)); //按重量递减排序,一样重时,按颜色排序
谓词接口包括三个方法:negate、and和or。
//苹果不是红的 Predicate notRedApple = redApple.negate(); //苹果是红色并且重量大于150 Predicate redAndHeavyApple = redApple.and(a -> a.getWeight() > 150); //要么是150g以上的红苹果,要么是绿苹果 Predicate redAndHeavyAppleOrGreen = redApple.and(a -> a.getWeight() > 150) .or(a -> "green".equals(a.getColor()));
Function 接口的 andThen 方法Function
Function f = x -> x + 1;
Function g = x -> x * 2;
Function h = f.andThen(g); //g(f(x)) int result = h.apply(1); //result = 4
Function 接口的 Compose 方法Function
Function f = x -> x + 1;
Function g = x -> x * 2;
Function h = f.compose(g); //f(g(x)) int result = h.apply(1); //result = 3
Lambda表达式可以理解为一种匿名函数:它没有名称,但有参数列表、函数主体、返回 类型,可能还有一个可以抛出的异常的列表。
Lambda表达式让你可以简洁地传递代码。
函数式接口就是仅仅声明了一个抽象方法的接口。
只有在接受函数式接口的地方才可以使用Lambda表达式。
Lambda表达式允许你直接内联,为函数式接口的抽象方法提供实现,并且将整个表达式作为函数式接口的一个实例。
Java 8自带一些常用的函数式接口,放在java.util.function包里,包括Predicate
为了避免装箱操作,对Predicate
环绕执行模式(即在方法所必需的代码中间,你需要执行点儿什么操作,比如资源分配 和清理)可以配合 Lambda 提高灵活性和可重用性。
Lambda 表达式所需要代表的类型称为目标类型。
方法引用让你重复使用现有的方法实现并直接传递它们。
Comparator、Predicate和Function等函数式接口都有几个可以用来结合 Lambda 表达式的默认方法。