Chinaunix首页 | 论坛 | 博客
  • 博客访问: 390321
  • 博文数量: 124
  • 博客积分: 2911
  • 博客等级: 少校
  • 技术积分: 1050
  • 用 户 组: 普通用户
  • 注册时间: 2010-05-15 15:57
文章分类

全部博文(124)

文章存档

2012年(6)

2011年(26)

2010年(92)

我的朋友

分类: C/C++

2010-05-15 22:51:09

判断栈的增长方向(1-向上生长;0-向下生长)

int stackDir( int x ){

    int a;

    return (&a - &x)>0;

}

一般i386系列机器的栈增长方向:高地址->低地址

===============================================================

一个由C/C++编译的 程序占用的内存分为以下几个部分
1、栈区(stack)— 由编译器自动分配释放 ,存放函数参数值局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap) — 一般由程序员分配释放 , 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表
3、全局区(静态区) (static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后由系统释放
4、文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放
5、程序代码区—存放函数体的二进制代码


二、例子程序
这是一个前辈写的,非常详细
//main.cpp
int a = 0; 全局初始化区
char *p1; 全局未初始化区
main()
{
int b; 栈
char s[] = "abc"; 栈
char *p2; 栈
char *p3 = "123456"; 123456在常量区,p3在栈上。
static int c =0; 全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
分 配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); 123456放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。
}


二、堆和栈的理论知识
2.1申请方式
stack:
由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间
heap:
需要程序员自己申请,并指明大小,在c中malloc函数
如p1 = (char *)malloc(10);
在C++中用new运算符
如p2 = (char *)malloc(10);
但 是注意p1、p2本身是在栈中的。


2.2
申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆: 首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,
会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该 结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的 delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

2.3申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最 大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因 此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续 的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。


2.4申请效率的比较:
栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配的内存,一般速度比较 慢,而且容易产生内存碎片,不过用起来最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不 是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。

2.5堆和栈中的存储内容
栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由 右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始 存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

2.6存取效率的比较

char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa 是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如 堆)快。
比如:
#include
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值 读到edx中,在根据edx读取字符,显然慢了。


2.7小结:
堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃 (使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
使用堆就象是自己动手做喜欢吃的 菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。
1、内存分配方面:

    堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。

    栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。

2、申请方式方面:

    堆:需要程序员自己申请,并指明大小。在c中malloc函数如p1 = (char *)malloc(10);在C++中用new运算符,但是注意p1、p2本身是在栈中的。因为他们还是可以认为是局部变量。

    栈:由系统自动分配。 例如,声明在函数中一个局部变量 int b;系统自动在栈中为b开辟空间。

3、系统响应方面:

    堆:操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表 中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样代码中的delete语句才能正确的 释放本内存空间。另外由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

    栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。

4、大小限制方面:

    堆:是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地 址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

    栈:在Windows下, 栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是固定 的(是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。

5、效率方面:

    堆:是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便,另外,在WINDOWS下,最好的方式是用 VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。

    栈:由系统自动分配,速度较快。但程序员是无法控制的。

6、存放内容方面:

    堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

    栈:在函数调用时第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址然后是函数的各个参数,在大多数的C编译器中,参数是由 右往左入栈,然后是函数中的局部变量。 注意: 静态变量是不入栈的。当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续 运行。

7、存取效率方面:

    堆:char *s1 = "Hellow Word";是在编译时就确定的;

    栈:char s1[] = "Hellow Word"; 是在运行时赋值的;用数组比用指针速度要快一些,因为指针在底层汇编中需要用edx寄存器中转一下,而数组在栈上直接读取。

C语言内存管理

【规则1】用malloc或new申请内存之后,应该立即检查指针值是否为NULL。防止使用指针值为NULL的内存。 

【规则2】不要忘记为数组和动态内存赋初值。防止将未被初始化的内存作为右值使用。 

【规则3】避免数组或指针的下标越界,特别要当心发生“多1”或者“少1”操作。 

【规则4】动态内存的申请与释放必须配对,防止内存泄漏。 

【规则5】用free或delete释放了内存之后,立即将指针设置为NULL,防止产生“野指针”。

常见的内存错误及其对策如下:

1.         内存分配未成功,却使用了它。

编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查指针是否为NULL。如果指针p是函数的参数,那么在函数的入口处用assert(p!=NULL)进行检查。如果是用mallocnew来申请内存,应该用if(p==NULL) if(p!=NULL)进行防错处理。

2.         内存分配虽然成功,但是尚未初始化就引用它。

犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值错误(例如数组)。

内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零值也不可省略,不要嫌麻烦。

3.         内存分配成功并且已经初始化,但操作越过了内存的边界。

例如在使用数组时经常发生下标“多1”或者“少1”的操作。特别是在for循环语句中,循环次数很容易搞错,导致数组操作越界。

4.         忘记了释放内存,造成内存泄露。

含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次程序突然死掉,系统出现提示:内存耗尽。

动态内存的申请与释放必须配对,程序中mallocfree的使用次数一定要相同,否则肯定有错误(new/delete同理)。

5.         释放了内存却继续使用它。

有三种情况:

1)程序中的对象调用关系过于复杂,实在难以搞清楚某个对象究竟是否已经释放了内存,此时应该重新设计数据结构,从根本上解决对象管理的混乱局面。

2)函数的return语句写错了,注意不要返回指向“栈内存”的“指针”或者“引用”,因为该内存在函数体结束时被自动销毁。

3)使用freedelete释放了内存后,没有将指针设置为NULL。导致产生“野指针”


阅读(1286) | 评论(0) | 转发(0) |
0

上一篇:PetStore 配置

下一篇:左值与右值

给主人留下些什么吧!~~