Chinaunix首页 | 论坛 | 博客
  • 博客访问: 381499
  • 博文数量: 160
  • 博客积分: 10
  • 博客等级: 民兵
  • 技术积分: 250
  • 用 户 组: 普通用户
  • 注册时间: 2012-09-18 01:16
文章分类

全部博文(160)

文章存档

2016年(4)

2015年(13)

2014年(29)

2013年(114)

我的朋友

分类: LINUX

2013-05-16 00:15:02

Eric Fang  2010-01-19

--------------------------------------------------------------

本站分析linux内核源码,版本号为2.6.32.3

转载请注明出处:http://ericfang.cublog.cn/

--------------------------------------------------------------

 

阅读本文之前,如果你对设备驱动模型还不了解,请先阅读本站设备驱动模型相关文章。

Platform总线是kernel中的一种虚拟总线,2.6版本很多驱动都用它来实现。

一.Platform初始化

系统启动时初始化时创建了platform_bus设备和platform_bus_type总线:

内核初始化函数kernel_init()中调用了do_basic_setup() ,该函数中调用driver_init()该函数中调用platform_bus_init(),我们看看platform_bus_init()函数:

int __init platform_bus_init(void)

{

       int error;

 

       early_platform_cleanup();

 

       error = device_register(&platform_bus);

       if (error)

              return error;

       error =  bus_register(&platform_bus_type);

       if (error)

              device_unregister(&platform_bus);

       return error;

}

device_register(&platform_bus)中的platform_bus如下:

struct device platform_bus = {

       .init_name       = "platform",

};

改函数把设备名为platform 的设备platform_bus注册到系统中,其他的platform的设备都会以它为parent。它在sysfs中目录下. /sys/devices/platform

接着bus_register(&platform_bus_type)注册了platform_bus_type总线,看一下改总线的定义:

struct bus_type platform_bus_type = {

       .name             = "platform",

       .dev_attrs       = platform_dev_attrs,

       .match           = platform_match,

       .uevent           = platform_uevent,

       .pm         = &platform_dev_pm_ops,

};

默认platform_bus_type中没有定义probe函数。

我们分析一下其中platform_matchplatform_uevent函数。在分析设备驱动模型是已经知道总线类型match函数是在设备匹配驱动时调用,uevent函数在产生事件时调用。

platform_match()代码如下:

static int platform_match(struct device *dev, struct device_driver *drv)

{

       struct platform_device *pdev = to_platform_device(dev);

       struct platform_driver *pdrv = to_platform_driver(drv);

 

       /* match against the id table first */

       if (pdrv->id_table)

              return platform_match_id(pdrv->id_table, pdev) != NULL;

 

       /* fall-back to driver name match */

       return (strcmp(pdev->name, drv->name) == 0);

}

static const struct platform_device_id *platform_match_id(

                     struct platform_device_id *id,

                     struct platform_device *pdev)

{

       while (id->name[0]) {

              if (strcmp(pdev->name, id->name) == 0) {

                     pdev->id_entry = id;

                     return id;

              }

              id++;

       }

       return NULL;

}

不难看出,如果pdrvid_table数组中包含了pdev->name,或者drv->namepdev->name名字相同,都会认为是匹配成功。id_table数组是为了应对那些对应设备和驱动的drv->namepdev->name名字不同的情况。

再看看platform_uevent()函数:

static int platform_uevent(struct device *dev, struct kobj_uevent_env *env)

{

       struct platform_device   *pdev = to_platform_device(dev);

 

       add_uevent_var(env, "MODALIAS=%s%s", PLATFORM_MODULE_PREFIX,

              (pdev->id_entry) ? pdev->id_entry->name : pdev->name);

       return 0;

}

添加了MODALIAS环境变量,我们回顾一下:platform_bus. parent->kobj->kset->uevent_opsdevice_uevent_opsbus_uevent_ops的定义如下:

static struct kset_uevent_ops device_uevent_ops = {

       .filter =    dev_uevent_filter,

       .name =          dev_uevent_name,

       .uevent = dev_uevent,

};

当调用device_add()时会调用kobject_uevent(&dev->kobj, KOBJ_ADD)产生一个事件,这个函数中会调用相应的kset_uevent_opsuevent函数,这里即为dev_uevent(),我们看一下这个函数的代码片段:

static int dev_uevent(struct kset *kset, struct kobject *kobj,

                    struct kobj_uevent_env *env)

{

       .

       .

       .

       /* have the bus specific function add its stuff */

       if (dev->bus && dev->bus->uevent) {

              retval = dev->bus->uevent(dev, env);

              if (retval)

                     pr_debug("device: '%s': %s: bus uevent() returned %d\n",

                             dev_name(dev), __func__, retval);

       }

       .

       .

       .

}

从这里看到如果bus->uevent()函数存在则会调用它。

到这里我们清楚了platform_uevent会在哪里调用了。

 

二.Platform设备的注册

我们在设备模型的分析中知道了把设备添加到系统要调用device_initialize()platform_device_add(pdev)函数。

对于platform设备的初始化,内核源码也提供了platform_device_alloc()函数。

对于platform设备的初注册,内核源码提供了platform_device_add()函数,它是进行一系列的操作后调用device_add()将设备注册到相应的总线上,内核代码中platform设备的其他注册函数都是基于这个函数,如platform_device_register()platform_device_register_simple()platform_device_register_data()等。

我们对这些函数逐个分析,首先看看初始化函数platform_device_alloc()

struct platform_device * platform_device_alloc(const char *name, int id)

{

       struct platform_object *pa;

 

       pa = kzalloc(sizeof(struct platform_object) + strlen(name), GFP_KERNEL);

       if (pa) {

              strcpy(pa->name, name);

              pa->pdev.name = pa->name;

              pa->pdev.id = id;

              device_initialize(&pa->pdev.dev);

              pa->pdev.dev.release = platform_device_release;

       }

 

       return pa ? &pa->pdev : NULL;

}

该函数首先为platform设备分配内存空间,这里的struct platform_object结构是struct platform _device结构的封装,其定义如下:

struct platform_object {

       struct platform_device pdev;

       char name[1];

};

其中第二个字段name的地址用于存放第一个字段pdevname指针上的内容,函数中的代码说明了这点:

              strcpy(pa->name, name);

              pa->pdev.name = pa->name;

接着用输入参数id初始化platform_deviceid字段,这个id是在设置代表它的kobject时会用到的,我们将在后面分析到,如果不用它,则设为-1

接着调用device_initialize()初始化platform_device内嵌的device,并设置其release函数指针。

platform_device_alloc()函数分析完了。

接着我们看看platform_device_add()函数:

int platform_device_add(struct platform_device *pdev)

{

       int i, ret = 0;

 

       if (!pdev)

              return -EINVAL;

 

       if (!pdev->dev.parent)

              pdev->dev.parent = & platform_bus;

 

       pdev->dev.bus = &platform_bus_type;

设置父节点和总线,这里的platform_busplatform_bus_type在上面的初始化部分已经分析。

       if (pdev->id != -1)

              dev_set_name(&pdev->dev, "%s.%d", pdev->name,  pdev->id);

       else

              dev_set_name(&pdev->dev, "%s", pdev->name);

设置pdev->dev内嵌的kobjname字段,它是pdev->name指向的内容加上id,如果id-1则忽略它,关于dev_set_name()函数已经在分析设备驱动模型时分析过,这里不再累赘。

       for (i = 0; i < pdev->num_resources; i++) {

              struct resource *p, *r = &pdev->resource[i];

 

              if (r->name == NULL)

                     r->name = dev_name(&pdev->dev);

 

              p = r->parent;

              if (!p) {

                     if (resource_type(r) == IORESOURCE_MEM)

                            p = &iomem_resource;

                     else if (resource_type(r) == IORESOURCE_IO)

                            p = &ioport_resource;

              }

 

              if (p && insert_resource(p, r)) {

                     printk(KERN_ERR

                            "%s: failed to claim resource %d\n",

                            dev_name(&pdev->dev), i);

                     ret = -EBUSY;

                     goto failed;

              }

       }

初始化资源并将资源分配给它,每个资源的它的parent不存在则根据flags域设置parentflagsIORESOURCE_MEM,则所表示的资源为I/O映射内存,flagsIORESOURCE_IO,则所表示的资源为I/O端口。

       pr_debug("Registering platform device '%s'. Parent at %s\n",

               dev_name(&pdev->dev), dev_name(pdev->dev.parent));

 

       ret = device_add(&pdev->dev);

就在这里把设备注册到总线上,如果你对device_add()函数不熟悉,请参考本站的设别模型分析部分内容。

       if (ret == 0)

              return ret;

 

 failed:

       while (--i >= 0) {

              struct resource *r = &pdev->resource[i];

              unsigned long type = resource_type(r);

 

              if (type == IORESOURCE_MEM || type == IORESOURCE_IO)

                     release_resource(r);

       }

除错撤销的内容。

       return ret;

}

platform_device_add()函数分析完了,我们看下platform_device_register()函数:

int platform_device_register(struct platform_device *pdev)

{

       device_initialize(&pdev->dev);

       return platform_device_add(pdev);

}

没错它就是初始化pdev->dev后调用platform_device_add()把它注册到platform_bus_type上。

在看看platform_device_register_simple()函数:

struct platform_device *platform_device_register_simple(const char *name,

                                                 int id,

                                                 struct resource *res,

                                                 unsigned int num)

{

       struct platform_device *pdev;

       int retval;

 

       pdev = platform_device_alloc(name, id);

       if (!pdev) {

              retval = -ENOMEM;

              goto error;

       }

 

       if (num) {

              retval = platform_device_add_resources(pdev, res, num);

              if (retval)

                     goto error;

       }

 

       retval = platform_device_add(pdev);

       if (retval)

              goto error;

 

       return pdev;

 

error:

       platform_device_put(pdev);

       return ERR_PTR(retval);

}

该函数就是调用了platform_device_alloc()platform_device_add()函数来创建的注册platform device,函数也根据res参数分配资源,看看platform_device_add_resources()函数:

int platform_device_add_resources(struct platform_device *pdev,

                              struct resource *res, unsigned int num)

{

       struct resource *r;

 

       r = kmalloc(sizeof(struct resource) * num, GFP_KERNEL);

       if (r) {

              memcpy(r, res, sizeof(struct resource) * num);

              pdev->resource = r;

              pdev-> num_resources = num;

       }

       return r ? 0 : -ENOMEM;

}

很简单,为资源分配内存空间,并拷贝参数res中的内容,链接到device并设置其num_resources

 

三.Platform设备的注册

我们在设备驱动模型的分析中已经知道驱动在注册要调用driver_register()platform driver的注册函数platform_driver_register()同样也是进行其它的一些初始化后调用driver_register()将驱动注册到platform_bus_type总线上,看一下这个函数:

int platform_driver_register(struct platform_driver *drv)

{

       drv->driver.bus = &platform_bus_type;

       if (drv->probe)

              drv-> driver.probe = platform_drv_probe;

       if (drv->remove)

              drv->driver.remove = platform_drv_remove;

       if (drv->shutdown)

              drv->driver.shutdown = platform_drv_shutdown;

 

       return driver_register(&drv->driver);

}

这里我们要先看看struct platform_driver结构:

struct platform_driver {

       int (*probe)(struct platform_device *);

       int (*remove)(struct platform_device *);

       void (*shutdown)(struct platform_device *);

       int (*suspend)(struct platform_device *, pm_message_t state);

       int (*resume)(struct platform_device *);

       struct device_driver driver;

       struct platform_device_id *id_table;

};

上面的函数指定了内嵌的driverbus字段为platform_bus_type,即为它将要注册到的总线。

然后设定了platform_driver内嵌的driverproberemoveshutdown函数。

看下相应的这三个函数:

static int platform_drv_probe(struct device *_dev)

{

       struct platform_driver *drv = to_platform_driver(_dev->driver);

       struct platform_device *dev = to_platform_device(_dev);

 

       return drv->probe(dev);

}

static int platform_drv_remove(struct device *_dev)

{

       struct platform_driver *drv = to_platform_driver(_dev->driver);

       struct platform_device *dev = to_platform_device(_dev);

 

       return drv->remove(dev);

}

 

static void platform_drv_shutdown(struct device *_dev)

{

       struct platform_driver *drv = to_platform_driver(_dev->driver);

       struct platform_device *dev = to_platform_device(_dev);

 

       drv->shutdown(dev);

}

从这三个函数的代码可以看到,又找到了相应的platform_driverplatform_device,然后调用platform_driverproberemoveshutdown函数。这是一种高明的做法:在不针对某个驱动具体的proberemoveshutdown指向的函数,而通过上三个过度函数来找到platform_driver,然后调用proberemoveshutdown接口。

 

如果设备和驱动都注册了,就可以通过bus ->match bus->probedriver->probe进行设备驱动匹配了,这部分内容将留到具体的设备中再做分析。

 

2.6.32.3版本的代码中,还针对某些不需要产生hotplug事件的设备提供设备驱动的匹配函数platform_driver_probe(),调用这个函数前首先要注册设备,看一下这个函数:

int __init_or_module platform_driver_probe(struct platform_driver *drv,

              int (*probe)(struct platform_device *))

{

       int retval, code;

 

       /* make sure driver won't have bind/unbind attributes */

       drv->driver.suppress_bind_attrs = true;

 

       /* temporary section violation during probe() */

       drv-> probe = probe;

       retval = code = platform_driver_register(drv);

 

       /*

        * Fixup that section violation, being paranoid about code scanning

        * the list of drivers in order to probe new devices.  Check to see

        * if the probe was successful, and make sure any forced probes of

        * new devices fail.

        */

       spin_lock(&platform_bus_type.p->klist_drivers.k_lock);

       drv->probe = NULL;

       if (code == 0 && list_empty(&drv->driver.p->klist_devices.k_list))

              retval = -ENODEV;

       drv->driver.probe = platform_drv_probe_fail;

       spin_unlock(&platform_bus_type.p->klist_drivers.k_lock);

 

       if (code != retval)

              platform_driver_unregister(drv);

       return retval;

}

该函数先设置drvprobe为输入函数,然后将drv注册到总线,这个过程回去匹配设备,这时会找到调用这个函数前注册的设备,然后将其挂钩,接着设置drv->probeNULL,设置drv->driver.probe platform_drv_probe_fail,这样后面如果产生匹配事件都会是匹配失败,也即platform_drv_probe_fail()匹配不成功,其代码如下:

static int platform_drv_probe_fail(struct device *_dev)

{

       return -ENXIO;

}

正如我们分析的一样。

 

 

到此,Platform总线分析完了,后面其他模块的分析中将会有platform的例子,有了上面的基础,到时我们就可以轻松的分析了^_^!

阅读(1389) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~