全部博文(215)
分类: LINUX
2014-05-10 09:29:31
进程的4GB内存空间被人为的分为两个部分--用户空间与内核空间。用户空间地址分布从0到3GB(PAGE_OFFSET,在0x86中它等于0xC0000000),3GB到4GB为内核空间。如下图所示:
内核空间中,从3G到vmalloc_start这段地址是物理内存映射区域(该区域中包含了内核镜像、物理页框表mem_map等等),比如我们使用的VMware虚拟系统内存是160M,那么3G~3G+160M这片内存就应该映射物理内存。在物理内存映射区之后,就是vmalloc区域。对于 160M的系统而言,vmalloc_start位置应在3G+160M附近(在物理内存映射区与vmalloc_start期间还存在一个8M的gap 来防止跃界),vmalloc_end的位置接近4G(最后位置系统会保留一片128k大小的区域用于专用页面映射),如下图:
kmalloc和get_free_page申请的内存位于物理内存映射区域,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因此存在较简单的转换关系,virt_to_phys()可以实现内核虚拟地址转化为物理地址:
#define __pa(x) ((unsigned long)(x)-PAGE_OFFSET)
extern inline unsigned long virt_to_phys(volatile void * address)
{
return __pa(address);
}
上面转换过程是将虚拟地址减去3G(PAGE_OFFSET=0XC000000)。
与之对应的函数为phys_to_virt(),将内核物理地址转化为虚拟地址:
#define __va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))
extern inline void * phys_to_virt(unsigned long address)
{
return __va(address);
}
virt_to_phys()和phys_to_virt()都定义在include\asm-i386\io.h中。
而vmalloc申请的内存则位于vmalloc_start~vmalloc_end之间,与物理地址没有简单的转换关系,虽然在逻辑上它们也是连续的,但是在物理上它们不要求连续。
我们用下面的程序来演示kmalloc、get_free_page和vmalloc的区别:
#include
#include
#include
MODULE_LICENSE("GPL");
unsigned char *pagemem;
unsigned char *kmallocmem;
unsigned char *vmallocmem;
int __init mem_module_init(void)
{
//最好每次内存申请都检查申请是否成功
//下面这段仅仅作为演示的代码没有检查
pagemem = (unsigned char*)get_free_page(0);
printk("<1>pagemem addr=%x", pagemem);
kmallocmem = (unsigned char*)kmalloc(100, 0);
printk("<1>kmallocmem addr=%x", kmallocmem);
vmallocmem = (unsigned char*)vmalloc(1000000);
printk("<1>vmallocmem addr=%x", vmallocmem);
return 0;
}
void __exit mem_module_exit(void)
{
free_page(pagemem);
kfree(kmallocmem);
vfree(vmallocmem);
}
module_init(mem_module_init);
module_exit(mem_module_exit);
我们的系统上有160MB的内存空间,运行一次上述程序,发现pagemem的地址在0xc7997000(约3G+121M)、kmallocmem 地址在0xc9bc1380(约3G+155M)、vmallocmem的地址在0xcabeb000(约3G+171M)处,符合前文所述的内存布局。