Chinaunix首页 | 论坛 | 博客
  • 博客访问: 128107
  • 博文数量: 28
  • 博客积分: 727
  • 博客等级: 中士
  • 技术积分: 190
  • 用 户 组: 普通用户
  • 注册时间: 2010-04-06 11:25
文章存档

2015年(1)

2013年(1)

2011年(26)

分类: LINUX

2011-03-01 09:32:34

与设备文件对话 (writes and IOCTLs)

设备文件是用来代表相对应的硬件设备。绝大多数的硬件设备是用来进行输出和输入操作的, 所以在内核中肯定有内核从进程中获得发送到设备的输出的机制。这是通过打开一个设备文件然后 向其中进行写操作来实现的,如同对普通文件的写操作。在下面的的例子中,这是通过 device_write实现的。

但这并不总是够用。设想你有一个通过串口连接的调制解调器(即使你使用的是内置调制解调器, 对于CPU来说同样也是通过连接在串口上来实现工作的)。通常我们通过打开一个设备文件向调制解调器 发送信息(将要通过通信线路传输的指令或数据)或读取信息(从通信线路中返回的响应指令或数据)。 但是,我们如何设置同串口对话的速率,也就是向串口传输数据的速率这个问题仍然没有解决。

解决之道是在Unix系统中的函数ioctl(Input Output ConTroL的简写) 每个设备可以有自己的ioctl命令,通过读取ioctl's 可以从进程中向内核发送信息,或写ioctl's向进程返回信息 ,或者两者都是,或都不是。函数ioctl 调用时需要三个参数:合适的设备文件的文件描述符,ioctl号,和一个可以被一个任务使用来 传递任何东西的long类型的参数

ioctl号是反映主设备号,ioctl的种类,对应的命令和参数类型的数字。它通常是通过在头文件中宏调用 (_IO, _IOR, _IOW _IOWR,取决于其种类)来建立的。该头文件应该被使用 ioctl的用户程序包含(这样它们就可以生成正确的ioctl's 和内核驱动模块包含(这样模块才能理解它)。在下面的例子中,头文件为chardev.h,源程序为ioctl.c

即使你只想在自己的模块中使用ioctls,你最好还是接收正式的 ioctl标准,这样当你意外的使用别人的ioctls 或别人使用你的时,你会知道有错误发生。详情参见内核代码目录树下的文件 Documentation/ioctl-number.txt.

Example 1-1. chardev.c

/*
 *  chardev.c - Create an input/output character device
 */

#include       /* We're doing kernel work */
#include       /* Specifically, a module */
#include
#include        /* for get_user and put_user */

#include "chardev.h"
#define SUCCESS 0
#define DEVICE_NAME "char_dev"
#define BUF_LEN 80

/*
 * Is the device open right now? Used to prevent
 * concurent access into the same device
 */
static int Device_Open = 0;

/*
 * The message the device will give when asked
 */
static char Message[BUF_LEN];

/*
 * How far did the process reading the message get?
 * Useful if the message is larger than the size of the
 * buffer we get to fill in device_read.
 */
static char *Message_Ptr;

/*
 * This is called whenever a process attempts to open the device file
 */
static int device_open(struct inode *inode, struct file *file)
{
#ifdef DEBUG
        printk("device_open(%p)\n", file);
#endif

        /*
         * We don't want to talk to two processes at the same time
         */
        if (Device_Open)
               return -EBUSY;

        Device_Open++;
        /*
         * Initialize the message
         */
        Message_Ptr = Message;
        try_module_get(THIS_MODULE);
        return SUCCESS;
}

static int device_release(struct inode *inode, struct file *file)
{
#ifdef DEBUG
        printk("device_release(%p,%p)\n", inode, file);
#endif

        /*
         * We're now ready for our next caller
         */
        Device_Open--;

        module_put(THIS_MODULE);
        return SUCCESS;
}

/*
 * This function is called whenever a process which has already opened the
 * device file attempts to read from it.
 */
static ssize_t device_read(struct file *file, /* see include/linux/fs.h   */
                          char __user * buffer,       /* buffer to be
                                                      * filled with data */
                          size_t length,      /* length of the buffer     */
                          loff_t * offset)
{
        /*
         * Number of bytes actually written to the buffer
         */
        int bytes_read = 0;

#ifdef DEBUG
        printk("device_read(%p,%p,%d)\n", file, buffer, length);
#endif

        /*
         * If we're at the end of the message, return 0
         * (which signifies end of file)
         */
        if (*Message_Ptr == 0)
               return 0;

        /*
         * Actually put the data into the buffer
         */
        while (length && *Message_Ptr) {

               /*
                * Because the buffer is in the user data segment,
                * not the kernel data segment, assignment wouldn't
                * work. Instead, we have to use put_user which
                * copies data from the kernel data segment to the
                * user data segment.
                */
               put_user(*(Message_Ptr++), buffer++);
               length--;
               bytes_read++;
        }

#ifdef DEBUG
        printk("Read %d bytes, %d left\n", bytes_read, length);
#endif

        /*
         * Read functions are supposed to return the number
         * of bytes actually inserted into the buffer
         */
        return bytes_read;
}

/*
 * This function is called when somebody tries to
 * write into our device file.
 */
static ssize_t
device_write(struct file *file,
             const char __user * buffer, size_t length, loff_t * offset)
{
        int i;

#ifdef DEBUG
        printk("device_write(%p,%s,%d)", file, buffer, length);
#endif

        for (i = 0; i < length && i < BUF_LEN; i++)
               get_user(Message[i], buffer + i);

        Message_Ptr = Message;

        /*
         * Again, return the number of input characters used
         */
        return i;
}

/*
 * This function is called whenever a process tries to do an ioctl on our
 * device file. We get two extra parameters (additional to the inode and file
 * structures, which all device functions get): the number of the ioctl called
 * and the parameter given to the ioctl function.
 *
 * If the ioctl is write or read/write (meaning output is returned to the
 * calling process), the ioctl call returns the output of this function.
 *
 */
int device_ioctl(struct inode *inode, /* see include/linux/fs.h */
                struct file *file,    /* ditto */
                unsigned int ioctl_num,       /* number and param for ioctl */
                unsigned long ioctl_param)
{
        int i;
        char *temp;
        char ch;

        /*
         * Switch according to the ioctl called
         */
        switch (ioctl_num) {
        case IOCTL_SET_MSG:
               /*
                * Receive a pointer to a message (in user space) and set that
                * to be the device's message.  Get the parameter given to
                * ioctl by the process.
                */
               temp = (char *)ioctl_param;

               /*
                * Find the length of the message
                */
               get_user(ch, temp);
               for (i = 0; ch && i < BUF_LEN; i++, temp++)
                       get_user(ch, temp);

               device_write(file, (char *)ioctl_param, i, 0);
               break;

        case IOCTL_GET_MSG:
               /*
                * Give the current message to the calling process -
                * the parameter we got is a pointer, fill it.
                */
               i = device_read(file, (char *)ioctl_param, 99, 0);

               /*
                * Put a zero at the end of the buffer, so it will be
                * properly terminated
                */
               put_user('\0', (char *)ioctl_param + i);
               break;

        case IOCTL_GET_NTH_BYTE:
               /*
                * This ioctl is both input (ioctl_param) and
                * output (the return value of this function)
                */
               return Message[ioctl_param];
               break;
        }

        return SUCCESS;
}

/* Module Declarations */

/*
 * This structure will hold the functions to be called
 * when a process does something to the device we
 * created. Since a pointer to this structure is kept in
 * the devices table, it can't be local to
 * init_module. NULL is for unimplemented functions.
 */
struct file_operations Fops = {
        .read = device_read,
        .write = device_write,
        .ioctl = device_ioctl,
        .open = device_open,
        .release = device_release,     /* a.k.a. close */
};

/*
 * Initialize the module - Register the character device
 */
int init_module()
{
        int ret_val;
        /*
         * Register the character device (atleast try)
         */
        ret_val = register_chrdev(MAJOR_NUM, DEVICE_NAME, &Fops);

        /*
         * Negative values signify an error
         */
        if (ret_val < 0) {
               printk("%s failed with %d\n",
                      "Sorry, registering the character device ", ret_val);
               return ret_val;
        }

        printk("%s The major device number is %d.\n",
               "Registeration is a success", MAJOR_NUM);
        printk("If you want to talk to the device driver,\n");
        printk("you'll have to create a device file. \n");
        printk("We suggest you use:\n");
        printk("mknod %s c %d 0\n", DEVICE_FILE_NAME, MAJOR_NUM);
        printk("The device file name is important, because\n");
        printk("the ioctl program assumes that's the\n");
        printk("file you'll use.\n");

        return 0;
}

/*
 * Cleanup - unregister the appropriate file from /proc
 */
void cleanup_module()
{
        int ret;

        /*
         * Unregister the device
         */
        ret = unregister_chrdev(MAJOR_NUM, DEVICE_NAME);

        /*
         * If there's an error, report it
         */
        if (ret < 0)
               printk("Error in module_unregister_chrdev: %d\n", ret);
}

Example 1-2. chardev.h

/*
 *  chardev.h - the header file with the ioctl definitions.
 *
 *  The declarations here have to be in a header file, because
 *  they need to be known both to the kernel module
 *  (in chardev.c) and the process calling ioctl (ioctl.c)
 */

#ifndef CHARDEV_H
#define CHARDEV_H

#include

/*
 * The major device number. We can't rely on dynamic
 * registration any more, because ioctls need to know
 * it.
 */
#define MAJOR_NUM 100

/*
 * Set the message of the device driver
 */
#define IOCTL_SET_MSG _IOR(MAJOR_NUM, 0, char *)
/*
 * _IOR means that we're creating an ioctl command
 * number for passing information from a user process
 * to the kernel module.
 *
 * The first arguments, MAJOR_NUM, is the major device
 * number we're using.
 *
 * The second argument is the number of the command
 * (there could be several with different meanings).
 *
 * The third argument is the type we want to get from
 * the process to the kernel.
 */

/*
 * Get the message of the device driver
 */
#define IOCTL_GET_MSG _IOR(MAJOR_NUM, 1, char *)
/*
 * This IOCTL is used for output, to get the message
 * of the device driver. However, we still need the
 * buffer to place the message in to be input,
 * as it is allocated by the process.
 */

/*
 * Get the n'th byte of the message
 */
#define IOCTL_GET_NTH_BYTE _IOWR(MAJOR_NUM, 2, int)
/*
 * The IOCTL is used for both input and output. It
 * receives from the user a number, n, and returns
 * Message[n].
 */

/*
 * The name of the device file
 */
#define DEVICE_FILE_NAME "char_dev"

#endif

Example 1-3. ioctl.c

/*
 *  ioctl.c - the process to use ioctl's to control the kernel module
 *
 *  Until now we could have used cat for input and output.  But now
 *  we need to do ioctl's, which require writing our own process.
 */

/*
 * device specifics, such as ioctl numbers and the
 * major device file.
 */
#include "chardev.h"

#include              /* open */
#include             /* exit */
#include          /* ioctl */

/*
 * Functions for the ioctl calls
 */

ioctl_set_msg(int file_desc, char *message)
{
        int ret_val;

        ret_val = ioctl(file_desc, IOCTL_SET_MSG, message);

        if (ret_val < 0) {
               printf("ioctl_set_msg failed:%d\n", ret_val);
               exit(-1);
        }
}

ioctl_get_msg(int file_desc)
{
        int ret_val;
        char message[100];

        /*
         * Warning - this is dangerous because we don't tell
         * the kernel how far it's allowed to write, so it
         * might overflow the buffer. In a real production
         * program, we would have used two ioctls - one to tell
         * the kernel the buffer length and another to give
         * it the buffer to fill
         */
        ret_val = ioctl(file_desc, IOCTL_GET_MSG, message);

        if (ret_val < 0) {
               printf("ioctl_get_msg failed:%d\n", ret_val);
               exit(-1);
        }

        printf("get_msg message:%s\n", message);
}

ioctl_get_nth_byte(int file_desc)
{
        int i;
        char c;

        printf("get_nth_byte message:");

        i = 0;
        while (c != 0) {
               c = ioctl(file_desc, IOCTL_GET_NTH_BYTE, i++);

               if (c < 0) {
                       printf
                           ("ioctl_get_nth_byte failed at the %d'th byte:\n",
                            i);
                       exit(-1);
               }

               putchar(c);
        }
        putchar('\n');
}

/*
 * Main - Call the ioctl functions
 */
main()
{
        int file_desc, ret_val;
        char *msg = "Message passed by ioctl\n";

        file_desc = open(DEVICE_FILE_NAME, 0);
        if (file_desc < 0) {
               printf("Can't open device file: %s\n", DEVICE_FILE_NAME);
               exit(-1);
        }

        ioctl_get_nth_byte(file_desc);
        ioctl_get_msg(file_desc);
        ioctl_set_msg(file_desc, msg);

        close(file_desc);
}

Example 1-4. Makefile
obj-m := chardev.o
KERNELBUILD :=/lib/modules/`uname -r`/build
default:
make -C $(KERNELBUILD) M=$(shell pwd) modules
clean:
rm -rf *.o *.ko *.mod.c .*.cmd .tmp_versions
阅读(1415) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~