上文从下到上的介绍了spi子系统,现在反过来从上到下的来介绍spi子系统的使用:
- int spi_register_driver(struct spi_driver *sdrv)
- {
- sdrv->driver.bus = &spi_bus_type;
- if (sdrv->probe)
- sdrv->driver.probe = spi_drv_probe;
- if (sdrv->remove)
- sdrv->driver.remove = spi_drv_remove;
- if (sdrv->shutdown)
- sdrv->driver.shutdown = spi_drv_shutdown;
- return driver_register(&sdrv->driver);
- }
2.6内核的典型做法,不直接使用原始设备驱动,而是使用包装后的抽象设备驱动spi_driver, 间接与原始设备驱动建立联系,并最终通过调用driver_register来注册原始设备驱动(要充分理解2.6内核的抽象化思想)。
注:
以后我们也不会直接与原始设备打交道了,而是通过spi_device来间接操作spi设备了^_^
- /**
- * spi_write_then_read - SPI synchronous write followed by read
- * @spi: device with which data will be exchanged
- * @txbuf: data to be written (need not be dma-safe)
- * @n_tx: size of txbuf, in bytes
- * @rxbuf: buffer into which data will be read
- * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
- *
- * This performs a half duplex MicroWire style transaction with the
- * device, sending txbuf and then reading rxbuf. The return value
- * is zero for success, else a negative errno status code.
- * This call may only be used from a context that may sleep.
- *
- * Parameters to this routine are always copied using a small buffer;
- * performance-sensitive or bulk transfer code should instead use
- * spi_{async,sync}() calls with dma-safe buffers.
- */
- /*
- * spi_write_then_read比较简单,容易说明spi的使用,用它来作例子比较合适
- */
- int spi_write_then_read(struct spi_device *spi,
- const u8 *txbuf, unsigned n_tx,
- u8 *rxbuf, unsigned n_rx)
- {
- static DECLARE_MUTEX(lock);
- int status;
- struct spi_message message;
- struct spi_transfer x[2];
- u8 *local_buf;
- /* Use preallocated DMA-safe buffer. We can't avoid copying here,
- * (as a pure convenience thing), but we can keep heap costs
- * out of the hot path ...
- */
- if ((n_tx + n_rx) > SPI_BUFSIZ)//SPI_BUFSIZ == 32
- return -EINVAL;
- /* 这里初始化message结构里面用于存放struct spi_transfer指针的链表头 */
- spi_message_init(&message);//INIT_LIST_HEAD(&message->transfers);
- memset(x, 0, sizeof x);
- /* 留意到没有:tx和rx个占一个工作添加到message的struct spi_transfer链表里,稍后被bitbang_work从链表里提出来处理(后面会讲到) */
- if (n_tx) {
- x[0].len = n_tx;
- spi_message_add_tail(&x[0], &message);//list_add_tail(&t->transfer_list, &m->transfers);
- }
- if (n_rx) {
- x[1].len = n_rx;
- spi_message_add_tail(&x[1], &message);
- }
- /* ... unless someone else is using the pre-allocated buffer */
- /* 如果有人在用这个预分配的缓存,那没办法了,只能再分配一个临时的,用完再释放掉 */
- if (down_trylock(&lock)) {
- local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
- if (!local_buf)
- return -ENOMEM;
- } else
- local_buf = buf;//否则就采用预分配的缓存吧
- /* local_buf的前部分用来存放要发送的数据,后部分用来存放接收到的数据 */
- memcpy(local_buf, txbuf, n_tx);
- x[0].tx_buf = local_buf;
- x[1].rx_buf = local_buf + n_tx;
- /* do the i/o */
- status = spi_sync(spi, &message);//同步io,等待spi传输完成,然后返回用户所接收的数据和状态
- if (status == 0) {
- memcpy(rxbuf, x[1].rx_buf, n_rx);
- status = message.status;
- }
- if (x[0].tx_buf == buf)//如果使用的是预分配的缓存,释放锁好让其它人使用
- up(&lock);
- else
- kfree(local_buf);//如果使用的是临时申请的缓存,释放之
- return status;
- }
- /*
- * spi_sync - blocking/synchronous SPI data transfers
- * @spi: device with which data will be exchanged
- * @message: describes the data transfers
- *
- * This call may only be used from a context that may sleep. The sleep
- * is non-interruptible, and has no timeout. Low-overhead controller
- * drivers may DMA directly into and out of the message buffers.
- *
- * Note that the SPI device's chip select is active during the message,
- * and then is normally disabled between messages. Drivers for some
- * frequently-used devices may want to minimize costs of selecting a chip,
- * by leaving it selected in anticipation that the next message will go
- * to the same chip. (That may increase power usage.)
- *
- * Also, the caller is guaranteeing that the memory associated with the
- * message will not be freed before this call returns.
- *
- * The return value is a negative error code if the message could not be
- * submitted, else zero. When the value is zero, then message->status is
- * also defined: it's the completion code for the transfer, either zero
- * or a negative error code from the controller driver.
- */
- int spi_sync(struct spi_device *spi, struct spi_message *message)
- {
- DECLARE_COMPLETION_ONSTACK(done);//声明一个完成变量
- int status;
- message->complete = spi_complete;//spi传输完成后的回调函数
- message->context = &done;
- status = spi_async(spi, message);
- if (status == 0)
- wait_for_completion(&done);//等待spi传输,调用spi_complete后返回
- message->context = NULL;
- return status;
- }
- /*
- * spi_async -- asynchronous SPI transfer
- * @spi: device with which data will be exchanged
- * @message: describes the data transfers, including completion callback
- *
- * This call may be used in_irq and other contexts which can't sleep,
- * as well as from task contexts which can sleep.
- *
- * The completion callback is invoked in a context which can't sleep.
- * Before that invocation, the value of message->status is undefined.
- * When the callback is issued, message->status holds either zero (to
- * indicate complete success) or a negative error code. After that
- * callback returns, the driver which issued the transfer request may
- * deallocate the associated memory; it's no longer in use by any SPI
- * core or controller driver code.
- *
- * Note that although all messages to a spi_device are handled in
- * FIFO order, messages may go to different devices in other orders.
- * Some device might be higher priority, or have various "hard" access
- * time requirements, for example.
- *
- * On detection of any fault during the transfer, processing of
- * the entire message is aborted, and the device is deselected.
- * Until returning from the associated message completion callback,
- * no other spi_message queued to that device will be processed.
- * (This rule applies equally to all the synchronous transfer calls,
- * which are wrappers around this core asynchronous primitive.)
- */
- static inline int
- spi_async(struct spi_device *spi, struct spi_message *message)
- {
- printk("spi_async\n");
- message->spi = spi;
- return spi->master->transfer(spi, message);//调用spi_bitbang_transfer传输数据
- }
- /*
- * spi_bitbang_transfer - default submit to transfer queue
- */
- int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
- {
- struct spi_bitbang *bitbang;
- unsigned long flags;
- int status = 0;
- m->actual_length = 0;
- m->status = -EINPROGRESS;
- bitbang = spi_master_get_devdata(spi->master);
- /*
- * 还记得spi_alloc_master函数中调用spi_master_set_devdata把struct s3c24xx_spi结构存放起来吧?
- * 而struct spi_bitbang结构正是struct s3c24xx_spi结构所包含的第一个结构
- */
- if (bitbang->shutdown)
- return -ESHUTDOWN;
- spin_lock_irqsave(&bitbang->lock, flags);
- if (!spi->max_speed_hz)
- status = -ENETDOWN;
- else {
- list_add_tail(&m->queue, &bitbang->queue);//把message加入到bitang的等待队列中
- queue_work(bitbang->workqueue, &bitbang->work);//把bitbang-work加入bitbang->workqueue中,调度运行
- }
- spin_unlock_irqrestore(&bitbang->lock, flags);
- return status;
- }
好了,稍微总结一下:
spi的读写请求通过:spi_transfer->spi_message->spi_bitbang添加都bitbang->queue中,被bitbang->work反方向提取出来执行(后面会提到)。
通 过queue_work(bitbang->workqueue, &bitbang->work)把bitbang-work加入bitbang->workqueue后,在某个合适的时间, bitbang->work将被调度运行,bitbang_work函数将被调用:
- /*
- * SECOND PART ... simple transfer queue runner.
- *
- * This costs a task context per controller, running the queue by
- * performing each transfer in sequence. Smarter hardware can queue
- * several DMA transfers at once, and process several controller queues
- * in parallel; this driver doesn't match such hardware very well.
- *
- * Drivers can provide word-at-a-time i/o primitives, or provide
- * transfer-at-a-time ones to leverage dma or fifo hardware.
- */
- static void bitbang_work(void *_bitbang)
- {
- struct spi_bitbang *bitbang = _bitbang;
- unsigned long flags;
- spin_lock_irqsave(&bitbang->lock, flags);
- bitbang->busy = 1;//置忙标志
- while (!list_empty(&bitbang->queue)) { //遍历bitbang->queue链表
- struct spi_message *m;
- struct spi_device *spi;
- unsigned nsecs;
- struct spi_transfer *t = NULL;
- unsigned tmp;
- unsigned cs_change;
- int status;
- int (*setup_transfer)(struct spi_device *,
- struct spi_transfer *);
- m = container_of(bitbang->queue.next, struct spi_message, queue);//获取spi_message结构
- list_del_init(&m->queue);//把spi_messae从queue里删除
- spin_unlock_irqrestore(&bitbang->lock, flags);
- /* FIXME this is made-up ... the correct value is known to
- * word-at-a-time bitbang code, and presumably chipselect()
- * should enforce these requirements too?
- */
- nsecs = 100;
- spi = m->spi;
- tmp = 0;
- cs_change = 1;
- status = 0;
- setup_transfer = NULL;
- list_for_each_entry (t, &m->transfers, transfer_list) {//从spi_message结构的transfers链表中获取spi_transfer结构
- if (bitbang->shutdown) {
- status = -ESHUTDOWN;
- break;
- }
- /* override or restore speed and wordsize */
- /* 本messae传输中,需要重设条件,调用setup_transfer函数 */
- if (t->speed_hz || t->bits_per_word) {
- setup_transfer = bitbang->setup_transfer;
- if (!setup_transfer) {
- status = -ENOPROTOOPT;
- break;
- }
- }
- if (setup_transfer) {
- status = setup_transfer(spi, t);
- if (status //片选激活spi
- bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
- ndelay(nsecs);
- }
- cs_change = t->cs_change;
- if (!t->tx_buf && !t->rx_buf && t->len) {
- status = -EINVAL;
- break;
- }
- /* transfer data. the lower level code handles any
- * new dma mappings it needs. our caller always gave
- * us dma-safe buffers.
- */
- if (t->len) {
- /* REVISIT dma API still needs a designated
- * DMA_ADDR_INVALID; ~0 might be better.
- */
- if (!m->is_dma_mapped)
- t->rx_dma = t->tx_dma = 0;
- status = bitbang->txrx_bufs(spi, t);//调用s3c24xx_spi_txrx开始传输数据
- }
- if (status != t->len) {
- if (status > 0)
- status = -EMSGSIZE;
- break;
- }
- m->actual_length += status;
- status = 0;
- /* protocol tweaks before next transfer */
- if (t->delay_usecs)
- udelay(t->delay_usecs);
- if (!cs_change)
- continue;//不用重新片选,继续下一个message的传输
- if (t->transfer_list.next == &m->transfers)//链表遍历完毕,退出循环
- break;
- /* sometimes a short mid-message deselect of the chip
- * may be needed to terminate a mode or command
- */
- ndelay(nsecs);
- bitbang->chipselect(spi, BITBANG_CS_INACTIVE);//需要重新片选的话...
- ndelay(nsecs);
- }
- m->status = status;//所用spi_message传输完毕
- m->complete(m->context);//应答返回变量,通知等待spi传输完毕的进程(具体来说就是spi_sync函数了)
- /* restore speed and wordsize */
- /* 前面重设过条件的,在这恢复之 */
- if (setup_transfer)
- setup_transfer(spi, NULL);
- /* normally deactivate chipselect ... unless no error and
- * cs_change has hinted that the next message will probably
- * be for this chip too.
- */
- if (!(status == 0 && cs_change)) {
- ndelay(nsecs);
- bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
- ndelay(nsecs);
- }
- spin_lock_irqsave(&bitbang->lock, flags);//重新获取自旋锁,遍历工作者队列的下一个工作
- }
- bitbang->busy = 0;//处理完毕,清除忙标志
- spin_unlock_irqrestore(&bitbang->lock, flags);
- }
- static int s3c24xx_spi_txrx(struct spi_device *spi, struct spi_transfer *t)
- {
- struct s3c24xx_spi *hw = to_hw(spi);
- dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
- t->tx_buf, t->rx_buf, t->len);
- hw->tx = t->tx_buf;//发送指针
- hw->rx = t->rx_buf;//接收指针
- hw->len = t->len;//需要发送/接收的数据数目
- hw->count = 0;//存放实际spi传输的数据数目
- /* send the first byte */
- writeb(hw_txbyte(hw, 0), hw->regs + S3C2410_SPTDAT);
- wait_for_completion(&hw->done);
- /*
- * 非常有意思,这里虽然只发送第一字节,可是中断里会帮你发送完其它的字节(并接收数据),
- * 直到所有的数据发送完毕且所要接收的数据接收完毕(首要)才返回
- */
- return hw->count;
- }
- static irqreturn_t s3c24xx_spi_irq(int irq, void *dev, struct pt_regs *regs)
- {
- struct s3c24xx_spi *hw = dev;
- unsigned int spsta = readb(hw->regs + S3C2410_SPSTA);
- unsigned int count = hw->count;
- if (hw->len){
- if (spsta & S3C2410_SPSTA_DCOL) {
- dev_dbg(hw->dev, "data-collision\n");//检测冲突
- complete(&hw->done);
- goto irq_done;
- }
- if (!(spsta & S3C2410_SPSTA_READY)) {
- dev_dbg(hw->dev, "spi not ready for tx?\n");//设备忙
- complete(&hw->done);
- goto irq_done;
- }
- hw->count++;
- if (hw->rx)
- hw->rx[count] = readb(hw->regs + S3C2410_SPRDAT);//接收数据
- count++;
- if (count len)
- writeb(hw_txbyte(hw, count), hw->regs + S3C2410_SPTDAT);//发送其它数据(或空数据0xFF)
- else
- complete(&hw->done);//发送接收完毕,通知s3c24xx_spi_txrx函数
- }
- irq_done:
- return IRQ_HANDLED;
- }
- static inline unsigned int hw_txbyte(struct s3c24xx_spi *hw, int count)
- {
- return hw->tx ? hw->tx[count] : 0xff;
- //如果还有数据没接收完且要发送的数据经已发送完毕,发送空数据0xFF
- }
注:
这里要注意的是:在spi提供的write_then_read函数中,写和读数据是分开两个阶段来进行的(写数据的时候不读数据;读数据的时候发送空数据0xff)。
总结:
简单的spi子系统大致就是这样, 相对比较简单易懂, 具体的应用可以参考一下代spi接口的触摸屏控制芯片驱动:
driver/input/touchscreen/ads7846.c
不过看明白它需要多花些时间了,因为毕竟这个驱动不仅和spi子系统打交道而且还和input子系统打交道,可不是那么容易应付的哦!
阅读(1516) | 评论(0) | 转发(1) |